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A decision that arises over and over when designing concurrent programs is
whether to represent program state in control flow or as data. This post is about
what that decision means and how to approach it. Done well, taking program
state stored in data and storing it instead in control flow can make programs
much clearer and more maintainable than they otherwise would be.

Before saying much more, it’s important to note that concurrency is not par-
allelism.:

– Concurrency is about how you write programs, about being able to
compose independently executing control flows, whether you call
them processes or threads or goroutines, so that your program can be
dealing with lots of things at once without turning into a giant mess.

– On the other hand, parallelism is about how you execute programs, al-
lowing multiple computations to run simultaneously, so that your pro-
gram can be doing lots of things at once efficiently.

Concurrency lends itself naturally to parallel execution, but the focus in this
post is about how to use concurrency to write cleaner programs, not faster ones.

The difference between concurrent programs and non-concurrent programs
is that concurrent programs can be written as if they are executing multiple in-
dependent control flows at the same time. The name for the smaller control
flows varies by language: thread, task, process, fiber, coroutine, goroutine, and so
on. No matter the name, the fundamental point for this post is that writing a
program in terms of multiple independently executing control flows allows you
to store program state in the execution state of one or more of those control
flows, specifically in the program counter (which line is executing in that piece)
and on the stack. Control flow state can always be maintained as explicit data
instead, but then the explicit data form is essentially simulating the control flow.
Most of the time, using the control flow features built into a programming lan-
guage is easier to understand, reason about, and maintain than simulating them
in data structures.

The rest of this post illustrates the rather abstract claims I’ve been making
about storing data in control flow by walking through some concrete exam-
ples. They happen to be written in Go, but the ideas apply to any language that
supports writing concurrent programs, including essentially every modern lan-
guage.

A Step-by-Step Example

Here is a seemingly trivial problem that demonstrates what it means to store
program state in control flow. Suppose we are reading characters from a file and
want to scan over a C-style double-quoted string. In this case, we have a non-
parallel program. There is no opportunity for parallelism here, but as we will
see, concurrency can still play a useful part.

If we don’t worry about checking the exact escape sequences in the string,
it suffices to match the regular expression "([^"\\]|\\.)*", which matches
a double quote, then a sequence of zero or more characters, and then another
double quote. Between the quotes, a character is anything that’s not a quote or
backslash, or else a backslash followed by anything (including a quote or back-
slash).
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Every regular expression can be compiled into finite automaton or state ma-
chine, so we might use a tool to turn that specification into this Go code:

state := 0

for {

c := read()

switch state {

case 0:

if c != ’"’ {

return false

}

state = 1

case 1:

if c == ’"’ {

return true

}

if c == ’\\’ {

state = 2

} else {

state = 1

}

case 2:

state = 1

}

}

The code has a single variable named state that represents the state of the au-
tomaton. The for loop reads a character and updates the state, over and over,
until it finds either the end of the string or a syntax error. This is the kind of
code that a program would write and that only a program could love. It’s diffi-
cult for people to read, and it will be difficult for people to maintain.

The main reason this program is so opaque is that its program state is stored
as data, specifically in the variable named state. When it’s possible to store state
in code instead, that often leads to a clearer program. To see this, let’s transform
the program, one small step at a time, into an equivalent but much more under-
standable version.
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We can start by duplicating the read calls into each case of the switch:

state := 0 state := 0

for { for {

c := read()

switch state { switch state {

case 0: case 0:

c := read()

if c != ’"’ { if c != ’"’ {

return false return false

} }

state = 1 state = 1

case 1: case 1:

c := read()

if c == ’"’ { if c == ’"’ {

return true return true

} }

if c == ’\’ { if c == ’\’ {

state = 2 state = 2

} else { } else {

state = 1 state = 1

} }

case 2: case 2:

c := read()

state = 1 state = 1

} }

} }

(In this and all the displays that follow, the old program is on the left, the new
program is on the right, and lines that haven’t changed are printed in gray text.)
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Now, instead of writing to state and then immediately going around the for
loop again to look up what to do in that state, we can use code labels and goto
statements:

state := 0 state0:

for {

switch state {

case 0:

c := read() c := read()

if c != ’"’ { if c != ’"’ {

return false return false

} }

state = 1 goto state1

case 1: state1:

c := read() c := read()

if c == ’"’ { if c == ’"’ {

return true return true

} }

if c == ’\’ { if c == ’\’ {

state = 2 goto state2

} else { } else {

state = 1 goto state1

} }

case 2: state2:

c := read() read()

state = 1 goto state1

}

}

Then we can simplify the program further. The goto state1 right before the
state1 label is a no-op and can be deleted. And we can see that there’s only one
way to get to state2, so we might as well replace the goto state2 with the ac-
tual code from state2:

state0: state0:

c := read() c := read()

if c != ’"’ { if c != ’"’ {

return false return false

} }

goto state1

state1: state1:

c := read() c := read()

if c == ’"’ { if c == ’"’ {

return true return true

} }

if c == ’\’ { if c == ’\’ {

goto state2

} else {

goto state1

}

state2:

read() read()

goto state1 goto state1

} else {

goto state1

}


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Then we can factor the “goto state1” out of both branches of the if statement.

state0: state0:

c := read() c := read()

if c != ’"’ { if c != ’"’ {

return false return false

} }

state1: state1:

c := read() c := read()

if c == ’"’ { if c == ’"’ {

return true return true

} }

if c == ’\’ { if c == ’\’ {

read() read()

goto state1 }

} else { goto state1

goto state1

}

Then we can drop the unused state0 label and replace the state1 loop with
an actual loop. Now we have something that looks like a real program:

state0:

c := read() c := read()

if c != ’"’ { if c != ’"’ {

return false return false

} }

state1: for {

c := read() c := read()

if c == ’"’ { if c == ’"’ {

return true return true

} }

if c == ’\’ { if c == ’\’ {

read() read()

} }

goto state1 }

We can simplify a little further, eliminating some unnecessary variables, and we
can make the check for the final quote (c == "") be the loop terminator.

c := read() if read() != ’"’ {

if c != ’"’ {

return false return false

} }

for { var c byte

c := read() for c != ’"’ {

if c == ’"’ { c = read()

return true

}

if c == ’\’ { if c == ’\’ {

read() read()

} }

} }

return true


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The final version is:

func parseQuoted(read func() byte) bool {

if read() != ’"’ {

return false

}

var c byte

for c != ’"’ {

c = read()

if c == ’\\’ {

read()

}

}

return true

}

Earlier I explained the regular expression by saying it “matches a double quote,
then a sequence of zero or more characters, and then another double quote. Be-
tween the quotes, a character is anything that’s not a quote or backslash, or else
a backslash followed by anything.” It’s easy to see that this program does exact-
ly that.

Hand-written programs can have opportunities to use control flow too. For
example, here is a version that a person might have written by hand:

if read() != ’"’ {

return false

}

inEscape := false

for {

c := read()

if inEscape {

inEscape = false

continue

}

if c == ’"’ {

return true

}

if c == ’\\’ {

inEscape = true

}

}

The same kinds of small steps can be used to convert the boolean variable in-

Escape from data to control flow, ending at the same cleaned up version.
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Either way, the state variable in the original is now implicitly represented
by the program counter, meaning which part of the program is executing. The
comments in this version indicate the implicit value of the original’s state (or
inEscape) variables:

func parseQuoted(read func() byte) bool {

// state == 0

if read() != ’"’ {

return false

}

var c byte

for c != ’"’ {

// state == 1 (inEscape = false)

c = read()

if c == ’\\’ {

// state == 2 (inEscape = true)

read()

}

}

return true

}

The original program was, in essence, simulating this control flow using the ex-
plicit state variable as a program counter, tracking which line was executing. If
a program can be converted to store explicit state in control flow instead, then
that explicit state was merely an awkward simulation of the control flow.

More Threads for More State

Before widespread support for concurrency, that kind of awkward simulation
was often necessary, because a different part of the program wanted to use the
control flow instead.

For example, suppose the text being parsed is the result of decoding base64
input, in which sequences of four 6-bit characters (drawn from a 64-character
alphabet) decode to three 8-bit bytes. The core of that decoder looks like:

for {

c1, c2, c3, c4 := read(), read(), read(), read()

b1, b2, b3 := decode(c1, c2, c3, c4)

write(b1)

write(b2)

write(b3)

}

If we want those write calls to feed into the parser from the previous section,
we need a parser that can be called with one byte at a time, not one that de-
mands a read callback. This decode loop cannot be presented as a read call-
back because it obtains 3 input bytes at a time and uses its control flow to track
which ones have been written. Because the decoder is storing its own state in its
control flow, parseQuoted cannot.

In a non-concurrent program, this base64 decoder and parseQuoted would
be at an impasse: one would have to give up its use of control flow state and fall
back to some kind of simulated version instead.


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To rewrite parseQuoted, we have to reintroduce the state variable, which we
can encapsulate in a struct with a Write method:

type parser struct {

state int

}

func (p *parser) Init() {

p.state = 0

}

func (p *parser) Write(c byte) Status {

switch p.state {

case 0:

if c != ’"’ {

return BadInput

}

p.state = 1

case 1:

if c == ’"’ {

return Success

}

if c == ’\\’ {

p.state = 2

} else {

p.state = 1

}

case 2:

p.state = 1

}

return NeedMoreInput

}

The Init method initializes the state, and then each Write loads the state, takes
actions based on the state and the input byte, and then saves the state back to
the struct.

For parseQuoted, the state machine is simple enough that this may be com-
pletely fine. But maybe the state machine is much more complex, or maybe the
algorithm is best expressed recursively. In those cases, being passed an input se-
quence by the caller one byte at a time means making all that state explicit in a
data structure simulating the original control flow.

Concurrency eliminates the contention between different parts of the pro-
gram over which gets to store state in control flow, because now there can be
multiple control flows.


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Suppose we already have the parseQuoted function, and it’s big and compli-
cated and tested and correct, and we don’t want to change it. We can avoid edit-
ing that code at all by writing this wrapper:

type parser struct {

c chan byte

status chan Status

}

func (p *parser) Init() {

p.c = make(chan byte)

p.status = make(chan Status)

go p.run()

<-p.status // always NeedMoreInput

}

func (p *parser) run() {

if !parseQuoted(p.read) {

p.status <- BadSyntax

} else {

p.status <- Success

}

}

func (p *parser) read() byte {

p.status <- NeedMoreInput

return <-p.c

}

func (p *parser) Write(c byte) Status {

p.c <- c

return <-p.status

}

Note the use of parseQuoted, completely unmodified, in the run method. Now
the base64 decoder can use p.Write and keep its program counter and local
variables.

The new goroutine that Init creates runs the p.run method, which in-
vokes the original parseQuoted function with an appropriate implementation
of read. Before starting p.run, Init allocates two channels for communicating
between the p.run method, runing in its own goroutine, and whatever gorou-
tine calls p.Write (such as the base64 decoder’s goroutine). The channel p.c
carries bytes from Write to read, and the channel p.status carries status up-
dates back. Each time parseQuoted calls read, p.read sends NeedMoreInput

on p.status and waits for an input byte on p.c. Each time p.Write is called,
it does the opposite: it sends the input byte c on p.c and then waits for and re-
turns an updated status from p.status. These two calls take turns, back and
forth, one executing and one waiting at any given moment.

To get this cycle going, the Init method does the initial receive from
p.status, which will correspond to the first read in parseQuoted. The actual
status for that first update is guaranteed to be NeedMoreInput and is discard-
ed. To end the cycle, we assume that when Write returns BadSyntax or Suc-

cess, the caller knows not to call Write again. If the caller incorrectly kept call-
ing Write, the send on p.c would block forever, since parseQuoted is done. We
would of course make that more robust in a production implementation.


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By creating a new control flow (a new goroutine), we were able to keep the
code-state-based implementation of parseQuoted as well as our code-state-
based base64 decoder. We avoided having to understand the internals of ei-
ther implementation. In this example, both are trivial enough that rewriting one
would not have been a big deal, but in a larger program, it could be a huge win
to be able to write this kind of adapter instead of having to make changes to ex-
isting code. As we’ll discuss later, the conversion is not entirely free – we need
to make sure the extra control flow gets cleaned up, and we need to think about
the cost of the context switches – but it may well still be a net win.

Store Stacks on the Stack

The base64 decoder’s control flow state included not just the program counter
but also two local variables. Those would have to be pulled out into a struct if
the decoder had to be changed not to use control flow state. Programs can use
an arbitrary number of local variables by using their call stack. For example,
suppose we have a simple binary tree data structure:

type Tree[V any] struct {

left *Tree[V]

right *Tree[V]

value V

}

If you can’t use control flow state, then to implement iteration over this tree, you
have to introduce an explicit “iterator”:

type Iter[V any] struct {

stk []*Tree[V]

}

func (t *Tree[V]) NewIter() *Iter[V] {

it := new(Iter[V])

for ; t != nil; t = t.left {

it.stk = append(it.stk, t)

}

return it

}

func (it *Iter[V]) Next() (v V, ok bool) {

if len(it.stk) == 0 {

return v, false

}

t := it.stk[len(it.stk)-1]

v = t.value

it.stk = it.stk[:len(it.stk)-1]

for t = t.right; t != nil; t = t.left {

it.stk = append(it.stk, t)

}

return v, true

}


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On the other hand, if you can use control flow state, confident that other parts
of the program that need their own state can run in other control flows, then
you can implement iteration without an explicit iterator, as a method that calls
a yield function for each value:

func (t *Tree[V]) All(f func(v V)) {

if t != nil {

t.left.All(f)

f(t.value)

t.right.All(f)

}

}

The All method is obviously correct. The correctness of the Iter version is
much less obvious. The simplest explanation is that Iter is simulating All. The
NewIter method’s loop that sets up stk is simulating the recursion in t.All(f)

down successive t.left branches. Next pops and saves the t at the top of
the stack and then simulates the recursion in t.right.All(f) down successive
t.left branches, setting up for the next Next. Finally it returns the value from
the top-of-stack t, simulating f(value).

We could write code like NewIter and argue its correctness by explaining that
it simulates a simple function like All. I’d rather write All and stop there.

Comparing Binary Trees

One might argue that NewIter is better than All, because it does not use any
control flow state, so it can be used in contexts that already use their control
flows to hold other information. For example, what if we want to traverse two
binary trees at the same time, checking that they hold the same values even if
their internal structure differs. With NewIter, this is straighforward:

func SameValues[V any](t1, t2 *Tree[V]) bool {

it1 := t1.NewIter()

it2 := t2.NewIter()

for {

v1, ok1 := it1.Next()

v2, ok2 := it2.Next()

if v1 != v2 || ok1 != ok2 {

return false

}

if !ok1 && !ok2 {

return true

}

}

}

This program cannot be written as easily using All, the argument goes, because
SameValues wants to use its own control flow (advancing two lists in lockstep)
that cannot be replaced by All’s control flow (recursion over the tree). But this
is a false dichotomy, the same one we saw with parseQuoted and the base64 de-
coder. If two different functions have different demands on control flow state,
they can run in different control flows.


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In our case, we can write this instead:

func SameValues[V any](t1, t2 *Tree[V]) bool {

c1 := make(chan V)

c2 := make(chan V)

go gopher(c1, t1.All)

go gopher(c2, t2.All)

for {

v1, ok1 := <-c1

v2, ok2 := <-c2

if v1 != v2 || ok1 != ok2 {

return false

}

if !ok1 && !ok2 {

return true

}

}

}

func gopher[V any](c chan<- V, all func(func(V))) {

all(func(v V) { c <- v })

close(c)

}

The function gopher uses all to walk a tree, announcing each value into a
channel. After the walk, it closes the channel.

SameValues starts two concurrent gophers, each of which walks one tree and
announces the values into one channel. Then SameValues does exactly the same
loop as before to compare the two value streams.

Note that gopher is not specific to binary trees in any way: it applies to any
iteration function. That is, the general idea of starting a goroutine to run the All
method works for converting any code-state-based iteration into an incremen-
tal iterator. My next post, “Coroutines for Go,” expands on this idea.

Limitations

This approach of storing data in control flow is not a panacea. Here are a few
caveats:

– If the state needs to evolve in ways that don’t naturally map to con-
trol flow, then it’s usually best to leave the state as data. For example,
the state maintained by a node in a distributed system is usually not
best represented in control flow, because timeouts, errors, and other
unexpected events tend to require adjusting the state in unpredictable
ways.

– If the state needs to be serialized for operations like snapshots, or
sending over a network, that’s usually easier with data than code.

– When you do need to create multiple control flows to hold differ-
ent control flow state, the helper control flows need to be shut down.
When SameValues returns false, it leaves the two concurrent gophers
blocked waiting to send their next values. Instead, it should unblock
them. That requires communication in the other direction to tell go-
pher to stop early. “Coroutines for Go” shows that.

– In the multiple thread case, the switching costs can be significant. On
my laptop, a C thread switch takes a few microseconds. A channel op-
eration and goroutine switch is an order of magnitude cheaper: a cou-


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ple hundred nanoseconds. An optimized coroutine system can reduce
the cost to tens of nanoseconds or less.

In general, storing data in control flow is a valuable tool for writing clean, sim-
ple, maintainable programs. Like all tools, it works very well for some jobs and
not as well for others.

Counterpoint: John McCarthy’s GOPHER

The idea of using concurrency to align a pair of binary trees is over 50 years
old. It first appeared in Charles Prenner’s “The control structure facilities of
ECL” (ACM SIGPLAN Notices, Volume 6, Issue 12, December 1971; see pages
106–109). In that presentation, titled “Tree Walks Using Coroutines”, the prob-
lem was to take two binary trees A and B with the same number of nodes and
copy the value sequence from A into B despite the two having different internal
structure. They present a straightforward coroutine-based variant.

Brian Smith and Carl Hewitt introduced the problem of simply comparing
two Lisp-style cons trees (in which internal nodes carry no values) in their draft
of “A Plasma Primer” (March 1975; see pages 61-62). For that problem, which
they named “samefringe”, they used continuation-based actors to run a pair of
“fringe” actors (credited to Howie Shrobe) over the two trees and report nodes
back to a comparison loop.

Gerald Sussman and Guy Steele presented the samefringe problem again, in
“Scheme: An Interpreter for Extended Lambda Calculus” (December 1975; see
pages 8–9), with roughly equivalent code (crediting Smith, Hewitt, and Shrobe
for inspiration). They refer to it as a “classic problem difficult to solve in most
programming languages”.

In August 1976, ACM SIGART Bulletin published Patrick Greussay’s “An Iter-
ative Lisp Solution to the Samefringe Problem”, This prompted a response let-
ter by Tim Finin and Paul Rutler in the November 1976 issue (see pages 4–5)
pointing out that Greussay’s solution runs in quadratic time and memory but
also remarking that “the SAMEFRINGE problem has been notoriously overused
as a justification for coroutines.” That discussion prompted a response letter by
John McCarthy in the February 1977 issue (see page 4).

In his response, titled “Another samefringe”, McCarthy gives the following
LISP solution:

(DE SAMEFRINGE (X Y)

(OR (EQ X Y)

(AND (NOT (ATOM X))

(NOT (ATOM Y))

(SAME (GOPHER X) (GOPHER Y)))))

(DE SAME (X Y)

(AND (EQ (CAR X) (CAR Y))

(SAMEFRINGE (CDR X) (CDR Y))))

(DE GOPHER (U)

(COND ((ATOM (CAR U)) U)

(T (GOPHER (CONS (CAAR U)

(CONS (CDAR U) (CDR U)))))))

He then explains:

gopher digs up the first atom in an S-expression, piling up the cdr parts
(with its hind legs) so that indexing through the atoms can be resumed.
Because of shared structure, the number of new cells in use in each ar-
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gument at any time (apart from those occupied by the original expres-
sion and assuming iterative execution) is the number of cars required
to go from the top to the current atom – usually a small fraction of the
size of the S-expression.

In modern terms, McCarthy’s GOPHER loops applying right tree rotations until
the leftmost node is at the top of the tree. SAMEFRINGE applies GOPHER to the
two trees, compares the tops, and then loops to consider the remainders.

After presenting a second, more elaborate solution, McCarthy remarks:

I think all this shows that samefringe is not an example of the need for
co-routines, and a new “simplest example” should be found. There is
no merit in merely moving information from data structure to control
structure, and it makes some kinds of modification harder.

I disagree with “no merit”. We can view McCarthy’s GOPHER-ized trees as an en-
coding of the same stack that NewIter maintains but in tree form. The correct-
ness follows for the same reasons: it is simulating a simple recursive traversal.
This GOPHER is clever, but it only works on trees. If you’re not John McCarthy,
it’s easier to write the recursive traversal and then rely on the general, concur-
rency-based gopher we saw earlier to do the rest.

My experience is that when it is possible, moving information from data
structure to control structure usually makes programs clearer, easier to under-
stand, and easier to maintain. I hope you find similar results.


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