
Coroutines for Go

Russ Cox
July 17, 2023

research.swtch.com/coro

This post is about why we need a coroutine package for Go, and what it would
look like. But first, what are coroutines?

Every programmer today is familiar with function calls (subroutines): F calls
G, which stops F and runs G. G does its work, potentially calling and waiting for
other functions, and eventually returns. When G returns, G is gone and F con-
tinues running. In this pattern, only one function is running at a time, while its
callers wait, all the way up the call stack.

In contrast to subroutines, coroutines run concurrently on different stacks,
but it’s still true that only one is running at a time, while its caller waits. F starts
G, but G does not run immediately. Instead, F must explicitly resume G, which
then starts running. At any point, G may turn around and yield back to F. That
pauses G and continues F from its resume operation. Eventually F calls resume
again, which pauses F and continues G from its yield. On and on they go, back
and forth, until G returns, which cleans up G and continues F from its most re-
cent resume, with some signal to F that G is done and that F should no longer
try to resume G. In this pattern, only one coroutine is running at a time, while
its caller waits on a different stack. They take turns in a well-defined, coordinat-
ed manner.

This is a bit abstract. Let’s look at real programs.

Coroutines in Lua

To use a venerable example*, consider comparing two binary trees to see if they
have the same value sequence, even if their structures are different. For exam-
ple, here is code in Lua 5* to generate some binary trees:

function T(l, v, r)

return {left = l, value = v, right = r}

end

e = nil

t1 = T(T(T(e, 1, e), 2, T(e, 3, e)), 4, T(e, 5, e))

t2 = T(e, 1, T(e, 2, T(e, 3, T(e, 4, T(e, 5, e)))))

t3 = T(e, 1, T(e, 2, T(e, 3, T(e, 4, T(e, 6, e)))))

The trees t1 and t2 both contain the values 1, 2, 3, 4, 5; t3 contains 1, 2, 3, 4, 6.
We can write a coroutine to walk over a tree and yield each value:

function visit(t)

if t ~= nil then -- note: ~= is "not equal"

visit(t.left)

coroutine.yield(t.value)

visit(t.right)

end

end

https://research.swtch.com/coro
pcdata#gopher
https://lua.org

C G

Then to compare two trees, we can create two visit coroutines and alternate
between them to read and compare successive values:

function cmp(t1, t2)

co1 = coroutine.create(visit)

co2 = coroutine.create(visit)

while true

do

ok1, v1 = coroutine.resume(co1, t1)

ok2, v2 = coroutine.resume(co2, t2)

if ok1 ~= ok2 or v1 ~= v2 then

return false

end

if not ok1 and not ok2 then

return true

end

end

end

The t1 and t2 arguments to coroutine.resume are only used on the first it-
eration, as the argument to visit. Subsequent resumes return that value from
coroutine.yield, but the code ignores the value.

A more idiomatic Lua version would use coroutine.wrap, which returns a
function that hides the coroutine object:

function cmp(t1, t2)

next1 = coroutine.wrap(function() visit(t1) end)

next2 = coroutine.wrap(function() visit(t2) end)

while true

do

v1 = next1()

v2 = next2()

if v1 ~= v2 then

return false

end

if v1 == nil and v2 == nil then

return true

end

end

end

When the coroutine has finished, the next function returns nil (full code*).

Generators in Python (Iterators in CLU)

Python provides generators that look a lot like Lua’s coroutines, but they are not
coroutines, so it’s worth pointing out the differences. The main difference is that
the “obvious” programs don’t work. For example, here’s a direct translation of our
Lua tree and visitor to Python:

def T(l, v, r):

return {’left’: l, ’value’: v, ’right’: r}

def visit(t):

if t is not None:

visit(t[’left’])

yield t[’value’]

visit(t[’right’])

https://gist.github.com/rsc/5908886288b741b847a83c0c6597c690

C G

But this obvious translation doesn’t work:

>>> e = None

>>> t1 = T(T(T(e, 1, e), 2, T(e, 3, e)), 4, T(e, 5, e))

>>> for x in visit(t1):

... print(x)

...

4

>>>

We lost 1, 2, 3, and 5. What happened?
In Python, that def visit does not define an ordinary function. Because the

body contains a yield statement, the result is a generator instead:

>>> type(visit(t1))

<class ’generator’>

>>>

The call visit(t[’left’]) doesn’t run the code in visit at all. It only creates
and returns a new generator, which is then discarded. To avoid discarding those
results, you have to loop over the generator and re-yield them:

def visit(t):

if t is not None:

for x in visit(t[’left’]):

yield x

yield t[’value’]

for x in visit(t[’right’])

yield x

Python 3.3 introduced yield from, allowing:

def visit(t):

if t is not None:

yield from visit(t[’left’]):

yield t[’value’]

yield from visit(t[’right’])

The generator object contains the state of the single call to visit, meaning lo-
cal variable values and which line is executing. That state is pushed onto the call
stack each time the generator is resumed and then popped back into the gener-
ator object at each yield, which can only occur in the top-most call frame. In
this way, the generator uses the same stack as the original program, avoiding the
need for a full coroutine implementation but introducing these confusing limi-
tations instead.

Python’s generators appear to be almost exactly copied from CLU, which pi-
oneered this abstraction (and so many other things), although CLU calls them
iterators, not generators. A CLU tree iterator looks like:

visit = iter (t: cvt) yields (int):

tagcase t

tag empty: ;

tag non_empty(t: node):

for x: int

in tree$visit(t.left) do

yield(x);

end;

yield(t.value);

C G

for x: int

in tree$visit(t.right) do

yield(x);

end;

end;

end visit;

The syntax is different, especially the tagcase that is examining a tagged union
representation of a tree, but the basic structure, including the nested for loops,
is exactly the same as our first working Python version. Also, because CLU was
statically typed, visit is clearly marked as an iterator (iter) not a function
(proc in CLU). Thanks to that type information, misuse of visit as an or-
dinary function call, like in our buggy Python example, is something that the
compiler could (and I assume did) diagnose.

About CLU’s implementation, the original implementers wrote, “Iterators are
a form of coroutine; however, their use is sufficiently constrained that they are
implemented using just the program stack. Using an iterator is therefore only
slightly more expensive than using a procedure.” This sounds exactly like the ex-
planation I gave above for the Python generators. For more, see Barbara Liskov
et al.’s 1977 paper “Abstraction Mechanisms in CLU*”, specifically sections 4.2,
4.3, and 6.

Coroutines, Threads, and Generators

At first glance, coroutines, threads, and generators look alike. All three provide
concurrency* in one form or another, but they differ in important ways.

– Coroutines provide concurrency without parallelism: when one corou-
tine is running, the one that resumed it or yielded to it is not.

Because coroutines run one at a time and only switch at specif-
ic points in the program, the coroutines can share data among them-
selves without races. The explicit switches (coroutine.resume in the
first Lua example or calling a next function in the second Lua exam-
ple) serve as synchronization points, creating happens-before edges*.

Because scheduling is explicit (without any preemption) and done
entirely without the operating system, a coroutine switch takes at most
around ten nanoseconds, usually even less. Startup and teardown is
also much cheaper than threads.

– Threads provide more power than coroutines, but with more cost.
The additional power is parallelism, and the cost is the overhead of
scheduling, including more expensive context switches and the need
to add preemption in some form. Typically the operating system pro-
vides threads, and a thread switch takes a few microseconds.

For this taxonomy, Go’s goroutines are cheap threads: a gorou-
tine switch is closer to a few hundred nanoseconds, because the Go
runtime takes on some of the scheduling work, but goroutines still
provide the full parallelism and preemption of threads. (Java’s new
lightweight threads are basically the same as goroutines.)

– Generators provide less power than coroutines, because only the top-
most frame in the coroutine is allowed to yield. That frame is moved
back and forth between an object and the call stack to suspend and
resume it.

Coroutines are a useful building block for writing programs that want concur-
rency for program structuring but not for parallelism. For one detailed exam-
ple of that, see my previous post, “Storing Data in Control Flow*”. For other ex-

https://dl.acm.org/doi/10.1145/359763.359789
pcdata
gomm#gos_memory_model_today
pcdata

C G

amples, see Ana Lúcia De Moura and Roberto Ierusalimschy’s 2009 paper “Re-
visiting Coroutines*”. For the original example, see Melvin Conway’s 1963 paper
“Design of a Separable Transition-Diagram Compiler*”.

Why Coroutines in Go?

Coroutines are a concurrency pattern not directly served by existing Go concur-
rency libraries. Goroutines are often close enough, but as we saw, they are not
the same, and sometimes that difference matters.

For example, Rob Pike’s 2011 talk “Lexical Scanning in Go*” presents the
original lexer and parser for the text/template package*. They ran in separate
goroutines connected by a channel, imperfectly simulating a pair of coroutines:
the lexer and parser ran in parallel, with the lexer looking ahead to the next to-
ken while the parser processed the most recent one. Generators would not have
been good enough—the lexer yields values from many different functions—but
full goroutines proved to be a bit too much. The parallelism provided by the
goroutines caused races and eventually led to abandoning the design in favor of
the lexer storing state in an object, which was a more faithful simulation of a
coroutine. Proper coroutines would have avoided the races and been more effi-
cient than goroutines.

An anticipated future use case for coroutines in Go is iteration over gener-
ic collections. We have discussed adding support to Go for ranging over func-
tions*, which would encourage authors of collections and other abstractions to
provide CLU-like iterator functions. Iterators can be implemented today using
function values, without any language changes. For example, a slightly simplified
tree iterator in Go could be:

func (t *Tree[V]) All(yield func(v V)) {

if t != nil {

t.left.All(yield)

yield(t.value)

t.right.All(yield)

}

}

That iterator can be invoked today as:

t.All(func(v V) {

fmt.Println(v)

})

and perhaps a variant could be invoked in a future version of Go as:

for v := range t.All {

fmt.Println(v)

}

Sometimes, however, we want to iterate over a collection in a way that doesn’t fit
a single for loop. The binary tree comparison is an example of this: the two it-
erations need to be interlaced somehow. As we’ve already seen, coroutines would
provide an answer, letting us turn a function like (*Tree).All (a “push” itera-
tor) into a function that returns a stream of values, one per call (a “pull” itera-
tor).

https://dl.acm.org/doi/pdf/10.1145/1462166.1462167
https://dl.acm.org/doi/pdf/10.1145/366663.366704
https://go.dev/talks/2011/lex.slide
https://go.dev/pkg/text/template
https://github.com/golang/go/discussions/56413

C G

How to Implement Coroutines in Go

If we are to add coroutines to Go, we should aim to do it without language
changes. That means the definition of coroutines should be possible to imple-
ment and understand in terms of ordinary Go code. Later, I will argue for an
optimized implementation provided directly by the runtime, but that implemen-
tation should be indistinguishable from the pure Go definition.

Let’s start with a very simple version that ignores the yield operation entire-
ly. It just runs a function in another goroutine:

package coro

func New[In, Out any](f func(In) Out) (resume func(In) Out) {

cin := make(chan In)

cout := make(chan Out)

resume = func(in In) Out {

cin <- in

return <-cout

}

go func() { cout <- f(<-cin) }()

return resume

}

New takes a function f which must have one argument and one result. New al-
locates channels, defines resume, creates a goroutine to run f, and returns the
resume funtion. The new goroutine blocks on <-cin, so there is no opportunity
for parallelism. The resume function unblocks the new goroutine by sending an
in value and then blocks receiving an out value. This send-receive pair makes
a coroutine switch. We can use coro.New like this (full code*):

func main() {

resume := coro.New(strings.ToUpper)

fmt.Println(resume("hello world"))

}

So far, coro.New is just a clunky way to call a function. We need to add yield,
which we can pass as an argument to f:

func New[In, Out any](f func(in In, yield func(Out) In) Out) (

resume func(In) Out) {

cin := make(chan In)

cout := make(chan Out)

resume = func(in In) Out {

cin <- in

return <-cout

}

yield := func(out Out) In {

cout <- out

return <-cin

}

go func() { cout <- f(<-cin, yield) }()

return resume

}

Note that there is still no parallelism here: yield is another send-receive pair.
These goroutines are constrained by the communication pattern to act indistin-
guishably from coroutines.

https://go.dev/play/p/gLhqAutT9Q4

C G

Example: String Parser

Before we build up to iterator conversion, let’s look at a few simpler examples.
In “Storing Data in Control Flow*,” we considered the problem of taking a func-
tion

func parseQuoted(read func() byte) bool

and running it in a separate control flow so that bytes can be provided one at a
time to a Write method. Instead of the ad hoc channel-based implementation
in that post, we can use:

type parser struct {

resume func(byte) Status

}

func (p *parser) Init() {

coparse := func(_ byte, yield func(Status) byte) Status {

read := func() byte { return yield(NeedMoreInput) }

if !parseQuoted(read) {

return BadInput

}

return Success

}

p.resume = coro.New(coparse)

p.resume(0)

}

func (p *parser) Write(c byte) Status {

return p.resume(c)

}

The Init funtion does all the work, and not much. It defines a function co-

parse that has the signature needed by coro.New, which means adding a
throwaway input of type byte. That function defines a read that yields Need-

MoreInput and then returns the byte provided by the caller. It then runs parse-
Quoted(read), converting the boolean result to the usual status code. Having
created a coroutine for coparse using coro.New, Init calls p.resume(0) to
allow coparse to advance to the first read in parseQuoted. Finally the Write

method is a trivial wrapper around p.resume (full code*).
This setup abstracts away the pair of channels that we maintained by hand in

the previous post, allowing us to work at a higher level as we write the program.

Example: Prime Sieve

As a slightly larger example, consider Doug McIlroy’s concurrent prime sieve*.
It consists of a pipeline of coroutines, one for each prime p, each running:

loop:

n = get a number from left neighbor

if (p does not divide n)

pass n to right neighbor

A counting coroutine on the leftmost side of the pipeline feeds the numbers 2,
3, 4, ... into the left end of the pipeline. A printing coroutines on the rightmost
side can read primes out, print them, and create new filtering coroutines. The
first filter in the pipeline removes multiples of 2, the next removes multiples of
3, the next removes multiples of 5, and so on.

pcdata
https://go.dev/play/p/MNGVPk11exV
https://www.cs.dartmouth.edu/~doug/sieve/sieve.pdf

C G

The coro.New primitive we’ve created lets us take a straightforward loop that
yields values and convert it into a function that can be called to obtain each val-
ue one at a time. Here is the counter:

func counter() func(bool) int {

return coro.New(func(more bool, yield func(int) bool) int {

for i := 2; more; i++ {

more = yield(i)

}

return 0

})

}

The counter logic is the function literal passed to New. It takes a yield function of
type func(int) bool. The code yields a value by passing it to yield and then
receives back a boolean saying whether to continue generating more numbers.
When told to stop, either because more was false on entry or because a yield

call returned false, the loop ends. It returns a final, ignored value, to satisfy the
function type required by New.

New turns this into loop a function that is the inverse of yield: a func(bool)

int that can be called with true to obtain the next value or with false to shut
down the generator. The filtering coroutine is only slightly more complex:

func filter(p int, next func(bool) int) (filtered func(bool) int) {

return coro.New(func(more bool, yield func(int) bool) int {

for more {

n := next(true)

if n%p != 0 {

more = yield(n)

}

}

return next(false)

})

}

It takes a prime p and a next func connected to the coroutine on the left and
then returns the filtered output stream to connect to the coroutine on the right.

Finally we have the printing coroutine:

func main() {

next := counter()

for i := 0; i < 10; i++ {

p := next(true)

fmt.Println(p)

next = filter(p, next)

}

next(false)

}

Starting with the counter, main maintains in next the output of the pipeline
constructed so far. Then it loops: read a prime p, print p, and then add a new
filter on the right end of the pipeline to remove multiples of p (full code*).

Notice that the calling relationship between coroutines can change over time:
any coroutine C can call another coroutine D’s next function and become the
coroutine that D yields to. The counter’s first yield goes to main, while its sub-
sequent yields go to the 2-filter. Similarly each p-filter yields its first output
(the next prime) to main while its subsequent yields go to the filter for that
next prime.

https://go.dev/play/p/3OHQ_FHe_Na

C G

Coroutines and Goroutines

In a certain sense, it is a misnomer to call these control flows coroutines. They
are full goroutines, and they can do everything an ordinary goroutine can, in-
cluding block waiting for mutexes, channels, system calls, and so on. What
coro.New does is create goroutines with access to coroutine switch operations
inside the yield and resume functions (which the sieve calls next). The abili-
ty to use those operations can even be passed to different goroutines, which is
happening with main handing off each of its next streams to each successive
filter goroutine. Unlike the go statement, coro.New adds new concurrency to
the program without new parallelism. The goroutine that coro.New(f) creates
can only run when some other goroutine explicitly loans it the ability to run us-
ing resume; that loan is repaid by yield or by f returning. If you have just one
main goroutine and run 10 go statements, then all 11 goroutines can be running
at once. In contrast, if you have one main goroutine and run 10 coro.New calls,
there are now 11 control flows but the parallelism of the program is what it was
before: only one runs at a time. Exactly which goroutines are paused in corou-
tine operations can vary as the program runs, but the parallelism never increas-
es.

In short, go creates a new concurrent, parallel control flow, while coro.New

creates a new concurrent, non-parallel control flow. It is convenient to contin-
ue to talk about the non-parallel control flows as coroutines, but remember that
exactly which goroutines are “non-parallel” can change over the execution of a
program, exactly the same way that which goroutines are receiving or sending
from channels can change over the execution of a program.

Robust Resumes

There are a few improvements we can make to coro.New so that it works bet-
ter in real programs. The first is to allow resume to be called after the function
is done: right now it deadlocks. Let’s add a bool result indicating whether re-

sume’s result came from a yield. The coro.New implementation we have so far
is:

func New[In, Out any](f func(in In, yield func(Out) In) Out) (

resume func(In) Out) {

cin := make(chan In)

cout := make(chan Out)

resume = func(in In) Out {

cin <- in

return <-cout

}

yield := func(out Out) In {

cout <- out

return <-cin

}

go func() {

cout <- f(<-cin, yield)

}()

return resume

}

C G

To add this extra result, we need to track whether f is running and return that
result from resume:

func New[In, Out any](f func(in In, yield func(Out) In) Out) (

resume func(In) (Out, bool)) {

cin := make(chan In)

cout := make(chan Out)

running := true

resume = func(in In) (out Out, ok bool) {

if !running {

return

}

cin <- in

out = <-cout

return out, running

}

yield := func(out Out) In {

cout <- out

return <-cin

}

go func() {

out := f(<-cin, yield)

running = false

cout <- out

}()

return resume

}

Note that since resume can only run when the calling goroutine is blocked, and
vice versa, sharing the running variable is not a race. The two are synchroniz-
ing by taking turns executing. If resume is called after the coroutine has exited,
resume returns a zero value and false.

Now we can tell when a goroutine is done (full code*):

func main() {

resume := coro.New(func(_ int, yield func(string) int) string {

yield("hello")

yield("world")

return "done"

})

for i := 0; i < 4; i++ {

s, ok := resume(0)

fmt.Printf("%q %v\n", s, ok)

}

}

$ go run cohello.go

"hello" true

"world" true

"done" false

"" false

$

https://go.dev/play/p/Y2tcF-MHeYS

C G

Example: Iterator Conversion

The prime sieve example showed direct use of coro.New, but the more bool

argument was a bit awkward and does not match the iterator functions we
saw before. Let’s look at converting any push iterator into a pull iterator using
coro.New. We will need a way to terminate the coroutine running the push it-
erator if we want to stop early, so we will add a boolean result from yield in-
dicating whether to continue, just like in the prime sieve:

push func(yield func(V) bool)

The goal of the new function coro.Pull is to turn that push function into a
pull iterator. The iterator will return the next value and a boolean indicating
whether the iteration is over, just like a channel receive or map lookup:

pull func() (V, bool)

If we want to stop the push iteration early, we need some way to signal that, so
Pull will return not just the pull function but also a stop function:

stop func()

Putting those together, the full signature of Pull is:

func Pull[V any](push func(yield func(V) bool)) (

pull func() (V, bool), stop func()) {

...

}

The first thing Pull needs to do is start a coroutine to run the push iterator,
and to do that it needs a wrapper function with the right type, namely one that
takes a more bool to match the bool result from yield, and that returns a final
V. The pull function can call resume(true), while the stop function can call
resume(false):

func Pull[V any](push func(yield func(V) bool)) (

pull func() (V, bool), stop func()) {

copush := func(more bool, yield func(V) bool) V {

if more {

push(yield)

}

var zero V

return zero

}

resume := coro.New(copush)

pull = func() (V, bool) {

return resume(true)

}

stop = func() {

resume(false)

}

return pull, stop

}

That’s the complete implementation. With the power of coro.New, it took very
little code and effort to build a nice iterator converter.

C G

To use coro.Pull, we need to redefine the tree’s All method to expect and
use the new bool result from yield:

func (t *Tree[V]) All(yield func(v V) bool) {

t.all(yield)

}

func (t *Tree[V]) all(yield func(v V) bool) bool {

return t == nil ||

t.Left.all(yield) && yield(t.Value) && t.Right.all(yield)

}

Now we have everything we need to write a tree comparison function in Go
(full code*):

func cmp[V comparable](t1, t2 *Tree[V]) bool {

next1, stop1 := coro.Pull(t1.All)

next2, stop2 := coro.Pull(t2.All)

defer stop1()

defer stop2()

for {

v1, ok1 := next1()

v2, ok2 := next2()

if v1 != v2 || ok1 != ok2 {

return false

}

if !ok1 && !ok2 {

return true

}

}

}

https://go.dev/play/p/hniFxnbXTgH

C G

Propagating Panics

Another improvement is to pass panics from a coroutine back to its caller,
meaning the coroutine that most recently called resume to run it (and is there-
fore sitting blocked in resume waiting for it). Some mechanism to inform one
goroutine when another panics is a very common request, but in general that
can be difficult, because we don’t know which goroutine to inform and whether
it is ready to hear that message. In the case of coroutines, we have the caller
blocked waiting for news, so it makes sense to deliver news of the panic.

To do that, we can add a defer to catch a panic in the new coroutine and
trigger it again in the resume that is waiting.

type msg[T any] struct {

panic any

val T

}

func New[In, Out any](f func(in In, yield func(Out) In) Out) (

resume func(In) (Out, bool)) {

cin := make(chan In)

cout := make(chan msg[Out])

running := true

resume = func(in In) (out Out, ok bool) {

if !running {

return

}

cin <- in

m := <-cout

if m.panic != nil {

panic(m.panic)

}

return m.val, running

}

yield := func(out Out) In {

cout <- msg[Out]{val: out}

return <-cin

}

go func() {

defer func() {

if running {

running = false

cout <- msg[Out]{panic: recover()}

}

}()

out := f(<-cin, yield)

running = false

cout <- msg[Out]{val: out}

}()

return resume

}

C G

Let’s test it out (full code*):

func main() {

defer func() {

if e := recover(); e != nil {

fmt.Println("main panic:", e)

panic(e)

}

}()

next, _ := coro.Pull(func(yield func(string) bool) {

yield("hello")

panic("world")

})

for {

fmt.Println(next())

}

}

The new coroutine yields hello and then panics world. That panic is propagat-
ed back to the main goroutine, which prints the value and repanics. We can see
that the panic appears to originate in the call to resume:

% go run coro.go

hello true

main panic: world

panic: world [recovered]

panic: world

goroutine 1 [running]:

main.main.func1()

/tmp/coro.go:9 +0x95

panic({0x108f360?, 0x10c2cf0?})

/go/src/runtime/panic.go:1003 +0x225

main.coro_New[...].func1()

/tmp/coro.go.go:55 +0x91

main.Pull[...].func2()

/tmp/coro.go.go:31 +0x1c

main.main()

/tmp/coro.go.go:17 +0x52

exit status 2

%

Cancellation

Panic propagation takes care of telling the caller about an early coroutine exit,
but what about telling a coroutine about an early caller exit? Analogous to the
stop function in the pull iterator, we need some way to signal to the coroutine
that it’s no longer needed, perhaps because the caller is panicking, or perhaps
because the caller is simply returning.

To do that, we can change coro.New to return not just resume but also a can-

cel func. Calling cancel will be like resume, except that yield panics instead
of returning a value. If a coroutine panics in a different way during cancellation,
we want cancel to propagate that panic, just as resume does. But of course we
don’t want cancel to propagate its own panic, so we create a unique panic val-
ue we can check for. We also have to handle a cancellation in before f begins.

https://go.dev/play/p/Sihm8KVlTIB

C G

var ErrCanceled = errors.New("coroutine canceled")

func New[In, Out any](f func(in In, yield func(Out) In) Out) (

resume func(In) (Out, bool), cancel func()) {

cin := make(chan msg[In])

cout := make(chan msg[Out])

running := true

resume = func(in In) (out Out, ok bool) {

if !running {

return

}

cin <- msg[In]{val: in}

m := <-cout

if m.panic != nil {

panic(m.panic)

}

return m.val, running

}

cancel = func() {

e := fmt.Errorf("%w", ErrCanceled) // unique wrapper

cin <- msg[In]{panic: e}

m := <-cout

if m.panic != nil && m.panic != e {

panic(m.panic)

}

}

yield := func(out Out) In {

cout <- msg[Out]{val: out}

m := <-cin

if m.panic != nil {

panic(m.panic)

}

return m.val

}

go func() {

defer func() {

if running {

running = false

cout <- msg[Out]{panic: recover()}

}

}()

var out Out

m := <-cin

if m.panic == nil {

out = f(m.val, yield)

}

running = false

cout <- msg[Out]{val: out}

}()

return resume, cancel

}

We could change Pull to use panics to cancel iterators as well, but in that con-
text the explicit bool seems clearer, especially since stopping an iterator is un-
exceptional.

C G

Example: Prime Sieve Revisited

Let’s look at how panic propagation and cancellation make cleanup of the prime
sieve “just work”. First let’s update the sieve to use the new API. The counter

and filter functions are already “one-line” return coro.New(...) calls. They
change signature to include the additional cancel func returned from coro.New:

func counter() (func(bool) (int, bool), func()) {

return coro.New(...)

}

func filter(p int, next func(bool) (int, bool)) (

func(bool) (int, bool), func()) {

return coro.New(...)

}

Then let’s convert the main function to be a primes function that prints n

primes (full code*):

func primes(n int) {

next, cancel := counter()

defer cancel()

for i := 0; i < n; i++ {

p, _ := next(true)

fmt.Println(p)

next, cancel = filter(p, next)

defer cancel()

}

}

When this function runs, after it has gotten n primes, it returns. Each of the de-
ferred cancel calls cleans up the coroutines that were created. And what if one
of the coroutines has a bug and panics? If the coroutine was resumed by a next

call in primes, then the panic comes back to primes, and primes’s deferred
cancel calls clean up all the other coroutines. If the coroutine was resumed by
a next call in a filter coroutine, then the panic will propagate up to the wait-
ing filter coroutine and then the next waiting filter coroutine, and so on,
until it gets to the p := next(true) in primes, which will again clean up the
remaining coroutines.

API

The API we’ve arrived at is:

New creates a new, paused coroutine ready to run the function f. The
new coroutine is a goroutine that never runs on its own: it only runs
while some other goroutine invokes and waits for it, by calling resume
or cancel.

A goroutine can pause itself and switch to the new coroutine by
calling resume(in). The first call to resume starts f(in, yield). Resume
blocks while f runs, until either f calls yield(out) or returns out. When
f calls yield, yield blocks and resume returns out, true. When f returns,
resume returns out, false. When resume has returned due to a yield, the
next resume(in) switches back to f, with yield returning in.

Cancel stops the execution of f and shuts down the coroutine. If re-
sume has not been called, then f does not run at all. Otherwise, can-
cel causes the blocked yield call to panic with an error satisfying er-
rors.Is(err, ErrCanceled).

https://go.dev/play/p/XWV8ACRKjDS

C G

If f panics and does not recover the panic, the panic is stopped in f ’s
coroutine and restarted in the goroutine waiting for f, by causing the
blocked resume or cancel that is waiting to re-panic with the same pan-
ic value. Cancel does not re-panic when f ’s panic is one that cancel it-
self triggered.

Once f has returned or panicked, the coroutine no longer exists. Sub-
sequent calls to resume return zero, false. Subsequent calls to cancel
simply return.

The functions resume, cancel, and yield can be passed between and
used by different goroutines, in effect dynamically changing which gor-
outine is “the coroutine.” Although New creates a new goroutine, it also
establishes an invariant that one goroutine is always blocked, either in
resume, cancel, yield, or (right after New) waiting for the resume that
will call f. This invariant holds until f returns, at which point the new
goroutine is shut down. The net result is that coro.New creates new
concurrency in the program without any new parallelism.

If multiple goroutines call resume or cancel, those calls are serialized.
Similarly, if multiple goroutines call yield, those calls are serialized.

func New[In, Out any](f func(in In, yield func(Out) In) Out) (

resume func(In) (Out, bool), cancel func())

Efficiency

As I said at the start, while it’s important to have a definition of coroutines
that can be understood by reference to a pure Go implementation, I believe we
should use an optimized runtime implementation. On my 2019 MacBook Pro,
passing values back and forth using the channel-based coro.New in this post re-
quires approximately 190ns per switch, or 380ns per value in coro.Pull. Re-
member that coro.Pull would not be the standard way to use an iterator: the
standard way would be to invoke the iterator directly, which has no coroutine
overhead at all. You only need coro.Pull when you want to process iterat-
ed values incrementally, not using a single for loop. Even so, we want to make
coro.Pull as fast as we can.

First I tried having the compiler mark send-receive pairs and leave hints for
the runtime to fuse them into a single operation. That would let the channel
runtime bypass the scheduler and jump directly to the other coroutine. This im-
plementation requires about 118ns per switch, or 236ns per pulled value (38%
faster). That’s better, but it’s still not as fast as I would like. The full generality
of channels is adding too much overhead.

Next I added a direct coroutine switch to the runtime, avoiding channels en-
tirely. That cuts the coroutine switch to three atomic compare-and-swaps (one
in the coroutine data structure, one for the scheduler status of the blocking
coroutine, and one for the scheduler status of the resuming coroutine), which
I believe is optimal given the safety invariants that must be maintained. That
implementation takes 20ns per switch, or 40ns per pulled value. This is about
10X faster than the original channel implementation. Perhaps more important-
ly, 40ns per pulled value seems small enough in absolute terms not to be a bot-
tleneck for code that needs coro.Pull.

* Asterisks mark hyperlinked text.

