
-- --

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting mathemat-
ics. The language has been designed to be easy to learn and to use by people (for example,
secretaries and mathematical typists) who know neither mathematics nor typesetting. Experience
indicates that the language can be learned in an hour or so, for it has few rules and fewer excep-
tions. For typical expressions, the size and font changes, positioning, line drawing, and the like
necessary to print according to mathematical conventions are all done automatically. For exam-
ple, the input

sum from i=0 to infinity x sub i = pi over 2

produces

i =0
Σ
∞

xi =
2
π_ _

The syntax of the language is specified by a small context-free grammar; a compiler-
compiler is used to make a compiler that translates this language into typesetting commands.
Output may be produced on either a phototypesetter or on a terminal with forward and reverse
half-line motions. The system interfaces directly with text formatting programs, so mixtures of
text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

‘‘Mathematics is known in the trade as
difficult, or penalty, copy because it is slower, more
difficult, and more expensive to set in type than any
other kind of copy normally occurring in books and
journals.’’ [1]

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
expression such as

x →π⁄2
lim (tan x)sin 2x = 1

requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special character or
two. (‘‘Requires’’ is perhaps the wrong word, but
mathematics has its own typographical conventions
which are quite different from those of ordinary text.)
Typesetting such an expression by traditional methods
is still an essentially manual operation.

A second difficulty is the two dimensional
character of mathematics, which the superscript and

limits in the preceding example showed in its simplest
form. This is carried further by

a 0+
a 1+

a 2+ a 3+ . . .
b 3_ _______

b 2_ ___________

b 1_ _______________

and still further by

∫
ae mx −be −mx

dx_ __________ =









 m √ ab

−1_ _____ coth−1(
√ b

√ a_ ___e mx)

m √ ab

1_ _____ tanh−1(
√ b

√ a_ ___e mx)

2m √ ab

1_ ______ log
√ a e mx +√ b

√ a e mx −√ b_ _________

These examples also show line-drawing, built-up
characters like braces and radicals, and a spectrum of
positioning problems. (Section 6 shows what a user
has to type to produce these on our system.)

-- --

- 2 -

2. Photocomposition

Photocomposition techniques can be used to
solve some of the problems of typesetting mathemat-
ics. A phototypesetter is a device which exposes a
piece of photographic paper or film, placing charac-
ters wherever they are wanted. The Graphic Systems
phototypesetter[2] on the UNIX operating system[3]
works by shining light through a character stencil.
The character is made the right size by lenses, and
the light beam directed by fiber optics to the desired
place on a piece of photographic paper. The exposed
paper is developed and typically used in some form
of photo-offset reproduction.

On UNIX, the phototypesetter is driven by a
formatting program called TROFF [4]. TROFF was
designed for setting running text. It also provides all
of the facilities that one needs for doing mathematics,
such as arbitrary horizontal and vertical motions,
line-drawing, size changing, but the syntax for
describing these special operations is difficult to learn,
and difficult even for experienced users to type
correctly.

For this reason we decided to use TROFF as an
‘‘assembly language,’’ by designing a language for
describing mathematical expressions, and compiling it
into TROFF.

3. Language Design

The fundamental principle upon which we
based our language design is that the language should
be easy to use by people (for example, secretaries)
who know neither mathematics nor typesetting.

This principle implies several things. First,
‘‘normal’’ mathematical conventions about operator
precedence, parentheses, and the like cannot be used,
for to give special meaning to such characters means
that the user has to understand what he or she is typ-
ing. Thus the language should not assume, for
instance, that parentheses are always balanced, for
they are not in the half-open interval (a ,b]. Nor
should it assume that that √ a +b can be replaced by

(a +b)
1⁄2, or that 1⁄(1−x) is better written as

1−x
1_ ___ (or

vice versa).

Second, there should be relatively few rules,
keywords, special symbols and operators, and the
like. This keeps the language easy to learn and
remember. Furthermore, there should be few excep-
tions to the rules that do exist: if something works in
one situation, it should work everywhere. If a vari-
able can have a subscript, then a subscript can have a
subscript, and so on without limit.

Third, ‘‘standard’’ things should happen
automatically. Someone who types ‘‘x=y+z+1’’
should get ‘‘x =y +z +1’’. Subscripts and superscripts
should automatically be printed in an appropriately
smaller size, with no special intervention. Fraction

bars have to be made the right length and positioned
at the right height. And so on. Indeed a mechanism
for overriding default actions has to exist, but its
application is the exception, not the rule.

We assume that the typist has a reasonable pic-
ture (a two-dimensional representation) of the desired
final form, as might be handwritten by the author of a
paper. We also assume that the input is typed on a
computer terminal much like an ordinary typewriter.
This implies an input alphabet of perhaps 100 charac-
ters, none of them special.

A secondary, but still important, goal in our
design was that the system should be easy to imple-
ment, since neither of the authors had any desire to
make a long-term project of it. Since our design was
not firm, it was also necessary that the program be
easy to change at any time.

To make the program easy to build and to
change, and to guarantee regularity (‘‘it should work
everywhere’’), the language is defined by a context-
free grammar, described in Section 5. The compiler
for the language was built using a compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to do. Our subse-
quent experience leads us to believe that any other
course would have been folly. The original language
was designed in a few days. Construction of a work-
ing system sufficient to try significant examples
required perhaps a person-month. Since then, we
have spent a modest amount of additional time over
several years tuning, adding facilities, and occasion-
ally changing the language as users make criticisms
and suggestions.

We also decided quite early that we would let
TROFF do our work for us whenever possible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, numerical com-
putation and testing, and conditional branching. Thus
we have been able to avoid writing a lot of mundane
but tricky software. For example, we store no text
strings, but simply pass them on to TROFF. Thus we
avoid having to write a storage management package.
Furthermore, we have been able to isolate ourselves
from most details of the particular device and charac-
ter set currently in use. For example, we let TROFF
compute the widths of all strings of characters; we
need know nothing about them.

A third design goal is special to our environ-
ment. Since our program is only useful for typeset-
ting mathematics, it is necessary that it interface
cleanly with the underlying typesetting language for
the benefit of users who want to set intermingled
mathematics and text (the usual case). The standard
mode of operation is that when a document is typed,
mathematical expressions are input as part of the text,
but marked by user settable delimiters. The program
reads this input and treats as comments those things

-- --

- 3 -

which are not mathematics, simply passing them
through untouched. At the same time it converts the
mathematical input into the necessary TROFF com-
mands. The resulting ioutput is passed directly to
TROFF where the comments and the mathematical
parts both become text and/or TROFF commands.

4. The Language

We will not try to describe the language pre-
cisely here; interested readers may refer to the appen-
dix for more details. Throughout this section, we will
write expressions exactly as they are handed to the
typesetting program (hereinafter called ‘‘EQN’’),
except that we won’t show the delimiters that the user
types to mark the beginning and end of the expres-
sion. The interface between EQN and TROFF is
described at the end of this section.

As we said, typing x=y+z+1 should produce
x =y +z +1, and indeed it does. Variables are made
italic, operators and digits become roman, and normal
spacings between letters and operators are altered
slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in
the input are used by EQN to separate pieces of the
input; they are not used to create space in the output.
Thus

x = y
+ z + 1

also gives x =y +z +1. Free-form input is easier to
type initially; subsequent editing is also easier, for an
expression may be typed as many short lines.

Extra white space can be forced into the output
by several characters of various sizes. A tilde ‘‘ ˜ ’’
gives a space equal to the normal word spacing in
text; a circumflex gives half this much, and a tab
charcter spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (t)=2π ∫ sin(ωt)dt

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate that
sin, pi, int, and omega are special, and potentially
worth special treatment. EQN looks up each such
string of characters in a table, and if appropriate gives
it a translation. In this case, pi and omega become
their greek equivalents, int becomes the integral sign
(which must be moved down and enlarged so it looks
‘‘right’’), and sin is made roman, following conven-
tional mathematical practice. Parentheses, digits and
operators are automatically made roman wherever
found.

Fractions are specified with the keyword over:

a+b over c+d+e = 1

produces

c +d +e
a +b_ ______=1

Similarly, subscripts and superscripts are intro-
duced by the keywords sub and sup:

x 2+y 2=z 2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2’s are necessary to mark the end
of the superscripts; similarly the keyword sup has to
be marked off by spaces or some equivalent delimiter.
The return to the proper baseline is automatic. Multi-
ple levels of subscripts or superscripts are of course
allowed: ‘‘x sup y sup z’’ is x y z

. The construct
‘‘something sub something sup something’’ is recog-
nized as a special case, so ‘‘x sub i sup 2’’ is xi

2

instead of xi
2.

More complicated expressions can now be
formed with these primitives:

∂x 2

∂2f_ ___=
a 2

x 2
_ __+

b 2

y 2
_ __

is produced by

{partial sup 2 f} over {partial x sup 2} =
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces {} are used to group objects together; in this
case they indicate unambiguously what goes over
what on the left-hand side of the expression. The
language defines the precedence of sup to be higher
than that of over, so no braces are needed to get the
correct association on the right side. Braces can
always be used when in doubt about precedence.

The braces convention is an example of the
power of using a recursive grammar to define the
language. It is part of the language that if a construct
can appear in some context, then any expression in
braces can also occur in that context.

There is a sqrt operator for making square
roots of the appropriate size: ‘‘sqrt a+b’’ produces
√ a +b , and

x = {−b +− sqrt{b sup 2 −4ac}} over 2a

is

x =
2a

−b ±√ b 2−4ac_ ___________

Since large radicals look poor on our typesetter, sqrt
is not useful for tall expressions.

Limits on summations, integrals and similar
constructions are specified with the keywords from
and to. To get

i =0
Σ
∞

xi →0

-- --

- 4 -

we need only type

sum from i=0 to inf x sub i −> 0

Centering and making the Σ big enough and the limits
smaller are all automatic. The from and to parts are
both optional, and the central part (e.g., the Σ) can in
fact be anything:

lim from {x −> pi /2} (tan˜x) = inf

is

x →π⁄2
lim (tan x)=∞

Again, the braces indicate just what goes into the
from part.

There is a facility for making braces, brackets,
parentheses, and vertical bars of the right height,
using the keywords left and right:

left [x+y over 2a right]˜=˜1

makes



 2a

x +y_ ___




= 1

A left need not have a corresponding right, as we
shall see in the next example. Any characters may
follow left and right, but generally only various
parentheses and bars are meaningful.

Big brackets, etc., are often used with another
facility, called piles, which make vertical piles of
objects. For example, to get

sign (x) ≡





−1

0

1

if

if

if

x <0

x =0

x >0

we can type

sign (x) ˜==˜ left {
rpile {1 above 0 above −1}
˜˜lpile {if above if above if}
˜˜lpile {x>0 above x=0 above x<0}

The construction ‘‘left {’’ makes a left brace big
enough to enclose the ‘‘rpile {...}’’, which is a right-
justified pile of ‘‘above ... above ...’’. ‘‘lpile’’ makes
a left-justified pile. There are also centered piles.
Because of the recursive language definition, a pile
can contain any number of elements; any element of a
pile can of course contain piles.

Although EQN makes a valiant attempt to use
the right sizes and fonts, there are times when the
default assumptions are simply not what is wanted.
For instance the italic sign in the previous example
would conventionally be in roman. Slides and tran-
sparencies often require larger characters than normal
text. Thus we also provide size and font changing
commands: ‘‘size 12 bold {A˜x˜=˜y}’’ will produce
A x = y. Size is followed by a number represent-
ing a character size in points. (One point is 1/72

inch; this paper is set in 9 point type.)

If necessary, an input string can be quoted in
"...", which turns off grammatical significance, and
any font or spacing changes that might otherwise be
done on it. Thus we can say

lim˜ roman "sup" ˜x sub n = 0

to ensure that the supremum doesn’t become a super-
script:

lim sup xn =0

Diacritical marks, long a problem in traditional
typesetting, are straightforward:

x
.
_ +x̂ +ỹ +X̂ +Y

..
=z +Z

 

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally changing
default sizes and fonts, for example for making view-
graphs or for setting chemical equations. The
language allows for matrices, and for lining up equa-
tions at the same horizontal position.

Finally, there is a definition facility, so a user
can say

define name "..."

at any time in the document; henceforth, any
occurrence of the token ‘‘name’’ in an expression will
be expanded into whatever was inside the double
quotes in its definition. This lets users tailor the
language to their own specifications, for it is quite
possible to redefine keywords like sup or over. Sec-
tion 6 shows an example of definitions.

The EQN preprocessor reads intermixed text
and equations, and passes its output to TROFF. Since
TROFF uses lines beginning with a period as control
words (e.g., ‘‘.ce’’ means ‘‘center the next output
line’’), EQN uses the sequence ‘‘.EQ’’ to mark the
beginning of an equation and ‘‘.EN’’ to mark the end.
The ‘‘.EQ’’ and ‘‘.EN’’ are passed through to TROFF
untouched, so they can also be used by a knowledge-
able user to center equations, number them automati-
cally, etc. By default, however, ‘‘.EQ’’ and ‘‘.EN’’
are simply ignored by TROFF, so by default equations
are printed in-line.

‘‘.EQ’’ and ‘‘.EN’’ can be supplemented by
TROFF commands as desired; for example, a centered
display equation can be produced with the input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ‘‘.EQ’’ and ‘‘.EN’’
around very short expressions (single letters, for

-- --

- 5 -

instance), the user can also define two characters to
serve as the left and right delimiters of expressions.
These characters are recognized anywhere in subse-
quent text. For example if the left and right delim-
iters have both been set to ‘‘#’’, the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let xi , y and α be positive

Running a preprocessor is strikingly easy on
UNIX. To typeset text stored in file ‘‘f ’’, one issues
the command:

eqn f  troff

The vertical bar connects the output of one process
(EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a
particularly original one. Equations are pictured as a
set of ‘‘boxes,’’ pieced together in various ways. For
example, something with a subscript is just a box fol-
lowed by another box moved downward and shrunk
by an appropriate amount. A fraction is just a box
centered above another box, at the right altitude, with
a line of correct length drawn between them.

The grammar for the language is shown below.
For purposes of exposition, we have collapsed some
productions. In the original grammar, there are about
70 productions, but many of these are simple ones
used only to guarantee that some keyword is recog-
nized early enough in the parsing process. Symbols
in capital letters are terminal symbols; lower case
symbols are non-terminals, i.e., syntactic categories.
The vertical bar  indicates an alternative; the brack-
ets [] indicate optional material. A TEXT is a string
of non-blank characters or any string inside double
quotes; the other terminal symbols represent literal
occurrences of the corresponding keyword.

eqn : box  eqn box

box : text
 { eqn }
 box OVER box
 SQRT box
 box SUB box  box SUP box
 [L  C  R]PILE { list }
 LEFT text eqn [RIGHT text]
 box [FROM box] [TO box]
 SIZE text box
 [ROMAN  BOLD  ITALIC] box
 box [HAT  BAR  DOT  DOTDOT  TILDE]
 DEFINE text text

list : eqn  list ABOVE eqn

text : TEXT

The grammar makes it obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

eqn : box  eqn box
box : text  { eqn }

Anywhere a single character could be used, any legal
construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

a over {b over c} ?

To answer questions like this, the grammar is
supplemented with a small set of rules that describe
the precedence and associativity of operators. In par-
ticular, we specify (more or less arbitrarily) that over
associates to the left, so the first alternative above is
the one chosen. On the other hand, sub and sup bind
to the right, because this is closer to standard
mathematical practice. That is, we assume x ab

is
x (ab), not (x a)b .

The precedence rules resolve the ambiguity in
a construction like

a sup 2 over b

We define sup to have a higher precedence than over,

so this construction is parsed as
b
a 2
_ __ instead of a b

2_ _

.

Naturally, a user can always force a particular
parsing by placing braces around expressions.

The ambiguous grammar approach seems to be
quite useful. The grammar we use is small enough to
be easily understood, for it contains none of the pro-
ductions that would be normally used for resolving
ambiguity. Instead the supplemental information
about precedence and associativity (also small enough
to be understood) provides the compiler-compiler with
the information it needs to make a fast, deterministic
parser for the specific language we want. When the
language is supplemented by the disambiguating
rules, it is in fact LR(1) and thus easy to parse[5].

The output code is generated as the input is
scanned. Any time a production of the grammar is
recognized, (potentially) some TROFF commands are
output. For example, when the lexical analyzer
reports that it has found a TEXT (i.e., a string of con-
tiguous characters), we have recognized the produc-
tion:

text : TEXT

-- --

- 6 -

The translation of this is simple. We generate a local
name for the string, then hand the name and the
string to TROFF, and let TROFF perform the storage
management. All we save is the name of the string,
its height, and its baseline.

As another example, the translation associated
with the production

box : box OVER box

is:

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions. Picturing the output as a set of
properly placed boxes makes the right sequence of
positioning commands quite obvious. The main
difficulty is in finding the right numbers to use for
esthetically pleasing positioning.

With a grammar, it is usually clear how to
extend the language. For instance, one of our users
suggested a TENSOR operator, to make constructions
like

m
l

n
T
k

i

j

Grammatically, this is easy: it is sufficient to add a
production like

box : TENSOR { list }

Semantically, we need only juggle the boxes to the
right places.

6. Experience

There are really three aspects of interest—how
well EQN sets mathematics, how well it satisfies its
goal of being ‘‘easy to use,’’ and how easy it was to
build.

The first question is easily addressed. This
entire paper has been set by the program. Readers
can judge for themselves whether it is good enough
for their purposes. One of our users commented that
although the output is not as good as the best hand-
set material, it is still better than average, and much
better than the worst. In any case, who cares?
Printed books cannot compete with the birds and

flowers of illuminated manuscripts on esthetic
grounds, either, but they have some clear economic
advantages.

Some of the deficiencies in the output could be
cleaned up with more work on our part. For exam-
ple, we sometimes leave too much space between a
roman letter and an italic one. If we were willing to
keep track of the fonts involved, we could do this
better more of the time.

Some other weaknesses are inherent in our out-
put device. It is hard, for instance, to draw a line of
an arbitrary length without getting a perceptible over-
strike at one end.

As to ease of use, at the time of writing, the
system has been used by two distinct groups. One
user population consists of mathematicians, chemists,
physicists, and computer scientists. Their typical
reaction has been something like:

(1) It’s easy to write, although I make the follow-
ing mistakes...

(2) How do I do...?

(3) It botches the following things.... Why don’t
you fix them?

(4) You really need the following features...

The learning time is short. A few minutes
gives the general flavor, and typing a page or two of
a paper generally uncovers most of the misconcep-
tions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were the ori-
ginal target of the system. They tend to be enthusias-
tic converts. They find the language easy to learn
(most are largely self-taught), and have little trouble
producing the output they want. They are of course
less critical of the esthetics of their output than users
trained in mathematics. After a transition period,
most find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems to be
remembering that a blank is a delimiter; even experi-
enced users use blanks where they shouldn’t and omit
them when they are needed. A common instance is
typing

f(x sub i)

which produces

f (xi)

instead of

f (xi)

Since the EQN language knows no mathematics, it
cannot deduce that the right parenthesis is not part of
the subscript.

The language is somewhat prolix, but this

-- --

- 7 -

doesn’t seem excessive considering how much is
being done, and it is certainly more compact than the
corresponding TROFF commands. For example, here
is the source for the continued fraction expression in
Section 1 of this paper:

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over
{a sub 3 + ... }}}

This is the input for the large integral of Section 1;
notice the use of definitions:

define emx "{e sup mx}"
define mab "{m sqrt ab}"
define sa "{sqrt a}"
define sb "{sqrt b}"
int dx over {a emx − be sup −mx} ˜=˜
left { lpile {

1 over {2 mab} ˜log˜
{sa emx − sb} over {sa emx + sb}

above
1 over mab ˜ tanh sup −1 (sa over sb emx)

above
−1 over mab ˜ coth sup −1 (sa over sb emx)

}

As to ease of construction, we have already
mentioned that there are really only a few person-
months invested. Much of this time has gone into
two things—fine-tuning (what is the most esthetically
pleasing space to use between the numerator and
denominator of a fraction?), and changing things
found deficient by our users (shouldn’t a tilde be a
delimiter?).

The program consists of a number of small,
essentially unconnected modules for code generation,
a simple lexical analyzer, a canned parser which we
did not have to write, and some miscellany associated
with input files and the macro facility. The program
is now about 1600 lines of C [6], a high-level
language reminiscent of BCPL. About 20 percent of
these lines are ‘‘print’’ statements, generating the out-
put code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
other formatting languages and devices. For example,
in less than 24 hours, one of us changed the entire
semantic package to drive NROFF, a variant of
TROFF, for typesetting mathematics on teletypewriter
devices capable of reverse line motions. Since many
potential users do not have access to a typesetter, but
still have to type mathematics, this provides a way to
get a typed version of the final output which is close
enough for debugging purposes, and sometimes even
for ultimate use.

7. Conclusions

We think we have shown that it is possible to
do acceptably good typesetting of mathematics on a
phototypesetter, with an input language that is easy to
learn and use and that satisfies many users’ demands.
Such a package can be implemented in short order,
given a compiler-compiler and a decent typesetting
program underneath.

Defining a language, and building a compiler
for it with a compiler-compiler seems like the only
sensible way to do business. Our experience with the
use of a grammar and a compiler-compiler has been
uniformly favorable. If we had written everything
into code directly, we would have been locked into
our original design. Furthermore, we would have
never been sure where the exceptions and special
cases were. But because we have a grammar, we can
change our minds readily and still be reasonably sure
that if a construction works in one place it will work
everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna, the
author of TROFF, for his willingness to modify
TROFF to make our task easier and for his continuous
assistance during the development of our program.
We are also grateful to A. V. Aho for help with
language theory, to S. C. Johnson for aid with the
compiler-compiler, and to our early users A. V. Aho,
S. I. Feldman, S. C. Johnson, R. W. Hamming, and
M. D. McIlroy for their constructive criticisms.

References

[1] A Manual of Style, 12th Edition. University of
Chicago Press, 1969. p 295.

[2] Model C/A/T Phototypesetter. Graphic Sys-
tems, Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L., ‘‘The
UNIX time-sharing system.’’ Comm. ACM 17,
7 (July 1974), 365-375.

[4] Ossanna, J. F., TROFF User’s Manual. Bell
Laboratories Computing Science Technical
Report 54, 1977.

[5] Aho, A. V., and Johnson, S. C., ‘‘LR Pars-
ing.’’ Comp. Surv. 6, 2 (June 1974), 99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall, Inc.,
1978.

-- --

