Fast Unrounded Scaling: Proof by Ivy
(Floating Point Formatting, Part 4)

Russ Cox
January 19, 2026
research.swtch.com/fp-proof

My post “Floating-Point Printing and Parsing Can Be Simple And Fast” depends on fast unrounded scaling, defined as:

(x) = [2x] || (2x # [2x])
uscale(x, e, p) = (x-29-10p>

The unrounded form of x € R, (x), is the integer value of | x] concatenated with two more bits: first, the “ bit” from the
binary representation of x (the bit representing 27%; 1 if x — | x| > %; or equivalently, | 2x| mod 2); and second, a “sticky bit”
that is 1 if any bits beyond the %2 bit were 1.

These are all equivalent definitions, using the convention that a boolean condition is 1 for true, 0 for false:

(xy = x| || c=1x] =%) || (x—[x] € 0,%) (‘| is bit concatenation)
= |x] || (x = x| = %) || 2x # [2x])
= |2x] || (2x # |2x])
= |4x] | (2x # |2x]) (¢
= |4x] | (4x # |4x])

> is bitwise OR)

The uscale operation computes the unrounded form of x - 2° - 102, so it needs to compute the integer |2 - x - 2° - 10?| and then
also whether the floor truncated any bits. One approach would be to compute 2 - x - 2° - 10 as an exact rational, but we want
to avoid arbitrary-precision math. A faster approach is to use a floating-point approximation for 10°: 10° ~ pm - 27¢, where
pm is 128 bits. Assuming x < 2%, this requires a single 64x128-192-bit multiplication, implemented by two full-width
64x64-128-bit multplications on a 64-bit computer.

The algorithm, which we will call Scale, is given integers X, e, and p subject to certain constraints and operates as follows:
Scale(x, e, p):

1. Let pe = —127 — [log, 1077].

2. Let pm = [10P/2%¢], looked up in a table indexed by p.

3. Let b = bits(x), the number of bits in the binary representation of x.

4. Letm=e+pe+b—1.

5. Let top = |x - pm/2™/2°|, middle = |x - pm/2°| mod 2™, bottom = x - pm mod 2°.
Put another way, split x - pm into top || middle || bottom where bottom is b bits, middle is m bits, and top is the
remaining bits.

6. Return <(top || middle)/2™*! > , computed as top || (middle # 0) or as top || (middle > 2).

The initial uscale implementation in the main post uses (middle # 0) in its result, but an optimized version uses
(middle > 2).

file:///Users/rsc/src/rsc.io/blog/_static/fp-all
file:///Users/rsc/src/rsc.io/blog/_static/fp

Fast Unrounded Scaling: Proof by Ivy

This post proves both versions of Scale correct for the x, e, and p needed by the three floating-point conversion algorithms in

the main post. Those algorithms are:

® FixedWidth converts floating-point to decimal. It needs to call Scale with a 53-bit x, e € [-1137,960], and
p € [—307, 341], chosen to produce a result 7 € [0,2 - 10'*), which is at most 61 bits (62-bit output;
b=53,m> 128 — 62 = 66).

e Short also converts floating-point to decimal. It needs to call Scale with a 55-bit x, e € [—1137,960], and
p € [—292,324], chosen to produce a result r € [0, 2 - 10'®), still at most 61 bits. (62-bit output;
b=155m> 128 — 62 = 66).

® Parse converts decimal to floating-point. It needs to call Scale with a 64-bit x and p € [—343,289], chosen to
produce a result ¥ € [0, 2°%), which is at most 54 bits (55-bit output; b = 64, m > 128 — 55 = 73).

The “output” bit counts include the Y bit but not the sticky bit. Note that for a given x and p, the maximum result size

determines a relatively narrow range of possible e.

To start the proof, consider a hypothetical algorithm Scale®™ that is the same as Scale except using exact real numbers.

(Technically, only rationals are required, so this could be implemented, but it is only a thought experiment.)
ScaleR(x, e, p):

1. Let pe = —127 — [log, 107P].

2. Let pm® = 10P/2<.
(Note: me is an exact value, not a ceiling.)

3. Let b = bits(x).

4. Letm= —e—pe—b—1.

5. Let top® = |x - pm®/2™/20 |, middle® = |x - pm/2°] mod 2™, bottom® = x - pm mod 2°.
(Note: top® and middle® are integers, but bottom® is an exact value that may not be an integer.)

6. Return < (top® || middle® || bottom™)/20+m+1 > computed as top® || (middle® || bottom® # 0).

Using exact reals makes it straighforward to prove Scale® correct.

Lemma 1. Scale® computes uscale(x, e, p).

Fast Unrounded Scaling: Proof by Ivy

Proof. Expand the math in the final result:

|x- pm®/2m/2°|

|x - 10P/2P¢/2™ /2P|
|x-10P/2P¢/2¢—pe=b=1/3b|
. lop,z—pe+e+pe+b+1—bJ

top®

=

=

|
|

|
|

=

107 . 2¢ 1

2-x-2°-10°]

x- pm/2°] mod 2™ # 0 or x mod 2° # 0
x-pm® mod 2™ P £ 0

|x- pm®/2m* 2| £ x - pm
[2-x-2°-10P] #2-x-2°-10°
top® || (middle® # 0 or bottom® # 0)

middle® #0 or bottom™ #0 =

R/2m+b

Scale®

(x-2°-107)

uscale(x, e, p)

So ScaleR(x, e, p) computes uscale(x, e, p).

definition of to pR]
definition of me]
definition of m]
rearranging]
simplifying]
rearranging]

definition of middle®, bottom®]

definition of floor and mod]
reusing expansion of x - pm™/2™/2%ab

definition of Scale®]

[2-x-2°-10P]||[2-x-2%-107] # 2-x-2°- 10" [applying previous two expansions]

definition of (...)]

definition of scale]

[
[
[
[
[
[
[
[simplifying]
[
[
[
[
[
[

Next we can establish basic conditions that make Scale correct.

uscale(x, e, p) (by Lemma 1), so does Scale(x, e, p). 1

Lemma 2. If top = topIR and (middle # 0) = (middle® Il bottom™ # 0), then Scale computes uscale(x, e, p).

Proof. Scale®(x, e, p) = top® || (middle® || bottom™ # 0), while Scale(x, e, p) = top || (middle # 0). If top = top" and
(middle # 0) = (middle® || bottom® # 0), then these expressions are identical. Since Scale®(x, e, p) computes

Now we need to show that top = top® and (middle # 0) = (middle® || bottom™ # 0) in all cases. We will also show that
middle # 1 to justify using middle > 2 in place of middle # 0 when that’s convenient.

Note that pm = [pm®] = pm® + ¢, for ¢, € [0, 1), and so:

x~(me + &)

X - pm
_ R
=Xx-pm +¢,

top || middle || bottom

£, =x-g €[0,2°)

top[R I middle® [l bottom™ + ¢,

The proof analyzes the effect of the addition of ¢; to the ideal result top® || middle® || bottom®. Since bottom® is b bits and ¢,

is at most b bits, adding €, > 0 always causes bottom # bottom". (Talking about the low b bits of a real number is unusual;

we mean the low b integer bits followed by all the fractional bits: x - pm® mod 2°.)

The question is whether that addition overflows and propagates a carry into middle or even top. There are two main cases:

exact results (middle® || bottom® = 0) and inexact results (middle® || bottom™ # 0).

Exact Results

Exact results have no error, making them match Scale® exactly.

ve]

Fast Unrounded Scaling: Proof by Ivy

Lemma 3. For exact results, Scale computes uscale(x, e, p) and middle # 1.

Proof. For an exact result, middle® || bottom™ = 0, meaning 2 - x - 2° - 10 is an integer and the sticky bit is 0. Since
bottom™ is b zero bits, adding ¢, affects bottom but does not carry into middle or top. Therefore top = topR and
middle = middle® = 0. The latter, combined with bottom® = 0, makes (middle # 0) = (middle® || bottom® # 0)
trivially true (both sides are false). By Lemma 2, Scale is correct. And since middle = 0, middle # 1. 1

Inexact Results

Inexact results are more work. We will reduce the correctness to a few conditions on middle.

Lemma 4. For inexact results, if middle # 0, then Scale(x, e, p) computes uscale(x, e, p).

Proof. For an inexact result, middle® || bottom®™ # 0. The only possible change from middle® to middle is a carry from
the error addition bottom® + ¢, overflowing bottom. That carry is at most 1, so middle = (middle® + ¢,) mod 2™ for
&, € [0, 1]. An overflow into top leaves middle = 0. If middle # 0 then there can be no overflow, so top = top[R. By
Lemma 2, Scale computes uscale(x, e, p). i

For some cases, it will be more convenient to prove the range of middle® instead of the range of middle. For that we can use a
variant of Lemma 4.

Lemma 5. For inexact results, if middle® € [1,2™ — 2] then Scale(x, e, p) computes uscale(x, e, p).

Proof. If middle® € [1,2™ — 2], then middle® + ¢, € [1,2™ — 1], so the mod in middle = (middle® + ¢,) mod 2™ does
nothing (there is no overflow and wraparound), so middle = middle® + ¢, > 1. By Lemma 4, Scale(x, e, p) computes
uscale(x, e, p). B

A related lemma helps with middle # 1.

Lemma 6. For inexact results, if middle® € [2,2™ — 2], then middle > 2.

Proof. Again there is no overflow, so middle > middle® > 2. B

Now we need to prove either that middle® € [2,2™ — 2] or that middle # 0 for all inexact results. We will consider four cases:

[Small Positive Powers] p € [0,27] and b < 64.

[Small Negative Powers] p € [—27,—1] and b < 64.

® [Large Powers, Printing] p € [—400, —28] U [28,400], b < 55, m > 66.
[Large Powers, Parsing] p € [—400, —28] U [28,400], b < 64, m > 73.

Small Positive Powers

Lemma 7. For inexact results and p € [0,27] and b < 64, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.

Proof. 5P < 2%, s0 the non-zero bits of pm" fits in the high 63 bits. That implies that the b+128-bit product
x- me = topR Il middle® Il bottom™ ends in 65 zero bits. Since b < 64, that means bottom™ = 0 and middle™s low bit is
zero.

Fast Unrounded Scaling: Proof by Ivy

Because the result is inexact, middle® [l bottom™ # 0, which implies middle® # 0 (since bottom® = 0). Since middle™s
low bit is zero, middle® € [2,2™ — 2]. By Lemma 5, Scale(x, e, p) computes uscale(x, e, p). By Lemma 6, middle # 1. 1

Small Negative Powers

Lemma 8. For inexact results and p € [—27,—1] and b < 64, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.

Proof. Scaling by 2¢ cannot introduce inexactness, since it just adds or subtracts from the exponent. The only inexactness
must come from 107, specifically the 5° part. Since p < 0 and 1/5 is not exactly representable in a binary fraction, the
result is inexact if and only if x mod 577 # 0 (remember that —p is positive!).

Since pm® € [2'%7,2!%) and 5P < 272, pm® = 57P . 2 for some k > 130. Since m + b < 128,

top® = |x- 25~ /57P | and middle® || bottom®™ = 2™ +P . (x - 25~ M *®) mod 57P)/57P, That is, middle® || bottom™
encodes some non-zero binary fraction with denominator 5~7. Note also that x - pm is b+128 bits and the output is at
most 64 bits we have m > 64, 50 2" -27% > 2,

That implies

middle® || bottom® € 2m*b. (57,1 - 57%)
c oam+b. (2—63’ 1— 2—63)
middle® € 2" (27,1 —27%)
c (2,2"7?)

By Lemma 5 and Lemma 6, Scale(x, e, p) computes uscale(x, e, p) and middle # 1. 1

Large Powers

That leaves p € [—400, —28] U [28,400]. There are not many pm to check—under a thousand—but there are far too many x
to exhaustively test that middle > 2 for all of them. Instead, we will have to be a bit more clever.

It would be simplest if we could prove that all possible pm and all x € [1,2°*) result in a non-zero middle, but that turns out
not to be the case.

For example, using p = —29, x = 0x8el51cee6e31e067 is a problem, which we can verify using the Ivy calculator:

. # hex x is the hex formatting of x (as text)
op hex x = '"#x' text x

spaced adds spaces to s between sections of 16 characters
op spaced s = (count s) <= 18: s; (spaced -16 drop s), ' ', -16 take s

pe returns the binary exponent for 1@x*x*p.
op pe p = —(127+ceil 2 log 10%x-p)

pm returns the 128-bit mantissa for 1@x*x*p.
op pm p = ceil (1@xxp) / 2xkpe p

spaced hex (pm -29) *x 0x8el5lcee6e31e067

0x7091bfc45568750f 0OOOOO0NOOOOO000 d81262b60aac6e8b7

https://github.com/robpike/ivy

Fast Unrounded Scaling: Proof by Ivy
We might perhaps think the problem is that 107 is too close to the small negative powers, but positive powers break too:

. spaced hex (pm 31) *x 0x93997b98618e62al

0x918b5cd9fd69fdc5 00000000OO000000 6dOOEOOOOOOOOOEO

We might yet hope that the zeros were not caused by an error carry; then as long as we force the inexact bit to 1, we could still
use the high bits. And indeed, for both of the previous examples, the zeros are not caused by an error carry: middle® is all

zeros. But that is not always the case. Here is a middle that is zero due to an error carry that overflowed into the top bits:

= spaced hex (pm 62) *x 0xd5bc71e52b31e483
spaced hex ((10%x62) * @xd5bc71e52b31e483) >> (pe 62)

0xcfd352e73dc6ddc3 0000000000000000 774bd77b38816199
0xcfd352e73dceddc2 ffffffffffffffff e6fdbo9b19804952a

Instead of proving the completely general case, we will have to pick our battles and focus on the specific cases we need for
floating-point conversions.

We don’t need to try every possible input width below the maximum b. Looking at Scale, it is clear that the inputs x and x - 2*
have the same top and middle, and also that bottom(x - 2 = bottom(x) - 2*. Since the middles are the same, the condition
middle > 2 has the same truth value for both inputs. So we can limit our analysis to maximum-width b-bit inputs in
[2°~1,2%). Similarly, we can prove that middle > 2 for m > k by proving it for m = k: moving more bits from the low end of
top to the high end of middle cannot make middle a smaller number.

Proving that middle > 2 for the cases we listed above means proving:

e [Printing] (b < 55, m > 66.)

For all large p and all x € [2°,2%): x - pm mod 2°> T 66 =121 > 255+1=56,
® [Parsing] (b < 64, m > 73.)

For all large p and all x € [29,25%): x- pm mod 264+ 73 =137 > 264+ 1=65,

To prove these two conditions, we are going to write an Ivy program to analyze each pm separately, proving that all relevant x
satisfy the condition.

Ivy has arbitrary-precision rationals and lightweight syntax, making it a convenient tool for sketching and testing
mathematical algorithms, in the spirit of Iverson’s Turing Award lecture about APL, “Notation as a Tool of Thought.” Like
APL, Ivy uses strict right-to-left operator precedence: 1+2%3+4 means (1+(2x(3+4))), and floor 10 log f means floor
(10 log f). Operators can be prefix unary like floor or infix binary like log. Each of the Ivy displays in this post is
executable: you can edit the code and re-run them by clicking the Play button (‘& 7). A full introduction to Ivy is beyond the

scope of this post; see the Ivy demo for more examples.

We've already started the proof program above by defining pm and pe. Let’s continue by defining a few more helpers.

https://dl.acm.org/doi/pdf/10.1145/1283920.1283935
https://swtch.com/ivy/demo.html

Fast Unrounded Scaling: Proof by Ivy

First let’s define is, an assertion for basic testing of other functions:

. # is asserts that x === y.
op X is y =
X === y: X=X
print x 'z#' vy
1/0
(1+2) is 3
9 (242) is 5
4 %5

input:1: division by zero

If the operands passed to s are not equal (the triple === does full vaue comparison), then s prints them out and divides by

zero to halt execution.

Next, we will set Ivy’s origin to 0 (instead of the default 1), meaning iota starts counting at 0 and array indexes start at 0, and
then we will define seq x y, which returns the list of integers [x, y].

Q)

origin 0

#seq x y = (X x+1 x+2 ... y)
op seq (x y) = x + iota 1l+y-x

(seq -2 4) is -2 -1 012 3 4

Now we are ready to start attacking our problem, which is to prove that for a given pm, b, and m, for all x,

b+m > 2b+1

middle || bottom = x - pm mod 2 , implying middle > 2, at which point we can use Lemma 4.

We will proceed in two steps, loosely following an approach by Vern Paxson and Tim Peters (the “Related Work” section
explains the differences). The first step is to solve the “modular search” problem of finding the minimum x > 0 (the “first” x)
such that x - ¢ mod m € [lo, hi]. The second step is to use that solution to solve the “modular minimum” problem of finding

an X in a given range that minimizes x - ¢ mod m.

Modular Search

Given constants ¢, m, lo, and hi, we want to find the minimum x > 0 (the “first” x) such that x - ¢ mod m € [lo, hi]. This is an
old programming contest problem, and I am not sure whether it has a formal name. There are multiple ways to derive a GCD-

like efficient solution. The following explanation, based on one by David Wirn, is the simplest I am aware of.

Here is a correct O(m) iterative algorithm:

https://codeforces.com/blog/entry/90690?#comment-791032

Fast Unrounded Scaling: Proof by Ivy

op modfirst (c m lo hi) =
Xr x cx mx =0 010
:while 1
(A) xr = hi but perhaps xr < lo.
:while xr < lo
Xr X = Xr x + c cX
:end
xr <= hi: x
(B) xr = ¢ < lo < hi < xr
:while xr > hi
Xr x = Xr x + (-m) mx
:end
lo <= Xxr: X
(C) xr < lo = hi < xr +m
X >= m: -1
:end

The algorithm walks x forward from 1, maintaining xr = x - ¢ mod m:

e When xr is too small, it adds ¢ to xr and increments x (cx = 1).
e When xr is too large, it subtracts m from xr and leaves x unchanged (mx = 0).

e When x reaches m, it gives up: there is no answer.
This loop is easily verified to be correct:

e Tt starts with x = 0 and considers successive X one at a time.
¢ While doing that, it maintains xr correctly:
o If xr is too small, we must add a ¢ (and increment x).
o If xr is too large, we must subtract an m (and leave x alone).

e If xr € [lo, hi], it notices and stops.
The only problem with this modfirst is that it is unbearably slow, but we can speed it up.
At (A), xr < hi, established by the initial xr = 0 or by the end of the previous iteration.

At (B), xr — ¢ < lo < hi < xr. Because xr — ¢ < lo, subtracting m > ¢ will make xr too small; that will always be followed by
at least | m/c| additions of c. So we might as well replace m with —m + ¢ - [m/c], speeding future trials. We will also have to

update mx, to make sure x is maintained correctly.
At (C), xr < hi < xr + m, and by a similar argument, we might as well replace ¢ with ¢ — m - |¢/m|, updating cx as well.

Making both changes to our code, we get:

Fast Unrounded Scaling: Proof by Ivy

mmx = mmx + (-c) cx * floor m/c
m==0: -1

ccx = ccx + (-m) mx x floor c/m
== 0: -1
(C) xr < lo = hi < xr+m

(g}

Notice that the loop is iterating (among other things) m = m mod c and ¢ = ¢ mod m, the same as Euclid’s GCD algorithm,
so O(log c) iterations will zero c or m. The old test for x > m (made incorrect by modifiying m) is replaced by checking for ¢

or m becoming zero.

Finally, we should optimize away the small while loops by calculating how many times each will be executed:

Xr x = Xr x + ¢ cx * ceil (0 max lo-xr)/c

Xr x xr x + (-m) mx * ceil (0 max xr-hi)/m

Each iteration of the outer wh1i le loop is now O(1), and the loop runs at most O(log c) times, giving a total time of O(log c¢),
dramatically better than the old O(m).

We can reformat the code to highlight the regular structure:

- op modfirst (c m lo hi) =

Xr x cxmx =0010

:while 1
Xr X = Xr x + c cx *x ceil (@ max lo-xr)/c ; xr <= hi : x
m mx =m mx + (-c) cx x floor m/c ;m == : -1
Xr x = Xxr x + (-m) mx x ceil (@ max xr-hi)/m ; lo <= xr : X
c cx=c¢ cx + (-m) mx x floor c/m == |

:end

(modfirst 13 256 1 5) is 20 # 20%13 mod 256 = 4 € [1, 5]
(modfirst 14 256 1 1) is -1 # impossible

Fast Unrounded Scaling: Proof by Ivy
We can also check that modfirst finds the exact answer from case 2, namely powers of five zeroing out the middle.

O [(nodfirst (pm -3) (24%128) 1 (2%%64)) is 125
spaced hex 125 x (pm -3)

0x40 0000000000000000 OOEOOOOOOOEO0042

Modular Minimization
Now we can solve the problem of finding the x € [xmax, xmin] that minimizes x - ¢ mod m.

Define the notation xz = x - ¢ mod m (the “residue” of x). We can construct x € [xmin, xmax] with minimal xj with the
following greedy algorithm.

1. Start with x = xmin.

2. Find the first y € [x + 1, xmax] such that y < Xp.
3. If no such y exists, return x.

4.Setx =y.

5. Go to step 2.

The algorithm finds the right answer, because it starts at xmin and then steps through every succesively better answer along
the way to xmax. The algorithm terminates because every search is finite and every step moves x forward by at least 1. The

only detail remaining is how to implement step 2.

For any x and y, (xz — yg) mod m = (x — y)g, because multiplication distributes over subtraction. Call that the subtraction
lemma.

Finding the first y € [x + 1, xmax] with yp < Xy is equivalent to finding the first d € [1, xmax — x] with (x + d)z < xg. By
the subtraction lemma, di = ((x + d)z — xz) mod m, so we are looking for the first d > 1 with dy € [m — xz, m — 1]. That’s
what modfirst does, except it searches d > 0. But 0z = 0 and we will only search for lo > 1, so modf1irst can safely start its
search at 0.

Note thatif dg € [m — (x + d)g, m — 1], the next iteration will choose the same d—any better answer would have been an
answer to the original search. So after finding d, we should add it to x as many times as we can.

The full algorithm is then:

1. Start with x = xmin.

2. Use modfirst to find the first d > 0 such that dy € [m — xz, m — 1].

3.1f no d exists or x + d > xmax, stop and return x. Otherwise continue.

4. Let s = m — dg, the number we are effectively subtracting from xp.

5. Let n be the smaller of | (xmax — x)/d] (the most times we can add d to x before exceeding our limit) and | xz/s| (the
most times we can subtract s from X before wrapping around).

6.Setx=x+d-n.

7. Go to step 2.

10

Fast Unrounded Scaling: Proof by Ivy

In Ivy, that algorithm is:

(>

op modmin (xmin xmax c m) =

X = Xmin

:while 1
Xr = (x*xc) mod m
d = modfirst cm, m - xr 1
(d < @) or (x+d) > xmax: x
s =m - (dxc) mod m
Xx = X + d x floor ((xmax-x)/d) min xr/s

rend

(modmin 10 25 13 255) is 20

The running time of modmin depends on what limits n. If n is limited by (xmax — x)/d then the next iteration will not find a
usable d, since any future d would have to be bigger than the one we just found, and there won’t be room to add it. On the
other hand, if n is limited by x/s, then it means we reduced Xy, at least by half. That limits the number of iterations to log, m,
and since modf1irst is O(log m), modmin is O(log® m).

The subtraction lemma and modfirst let us build other useful operations too. One obvious variant of modmin is modmax,
which finds the x € [xmin, xmax] that maximizes xz and also runs in O(log2 m).

We can extend modmin to minimize xg > lo instead, by stepping to the first xz > lo before looking for improvements:

a

op modminge (xmin xmax ¢ m lo) =
X = xmin
:if (xr = (xxc) mod m) < lo

d = modfirst ¢ m (lo—-xr) ((m-1)-xr)
d <0: :ret -1
X =x +d

:end

:while 1

Xr = (x*c) mod m
d = modfirst ¢ m (m-(xr-1lo)) (m-1)

(d < @) or (x+d) > xmax: X

s =m - (dxc) mod m

X = x + d % floor ((xmax-x)/d) min (xr-1lo)/s
:end

op modmin (xmin xmax ¢ m) = modminge xmin xmax c m 0

modmin 10 25 13 255) is 20
modminge 10 25 13 255 6) is 21
modminge 1 20 13 255 6) is 1
modminge 10 20 255 255 1) is -1

Py

11

Fast Unrounded Scaling: Proof by Ivy

We can also invert the search to produce modmax and modmaxle:

(>

op modmaxle (xmin xmax ¢ m hi) =
X = xmin
:if (xr = (x*kc) mod m) > hi

d = modfirst ¢ m (m-xr) ((m-xr)+hi)
d <0: :ret -1
X =x+d

:end

:while 1

Xr = (x*c) mod m

d = modfirst ¢ m 1 (hi-xr)

(d < @) or (x+d) > xmax: x

s = (d*c) mod m

X = X +d x floor ((xmax-x)/d) min (hi-xr)/s

tend
op modmax (xmin xmax c m) = modmaxle xmin xmax ¢ m (m-1)

(modmax 10 25 13 255) is 19
(modmaxle 10 25 13 255 200) is 15

Another variant is mod f1ind, which finds the first x € [xmin, xmax] such that xg € [lo, hi]. It doesn’t need a loop at all:
. op modfind (xmin xmax ¢ m lo hi) =
X = xmin
xr = (x*c) mod m
(lo <= xr) and xr <= hi: x
d = modfirst ¢ m, (lo hi — xr) mod m
(d < @) or (x+d) > xmax: -1
x+d

(modfind 21 100 13 256 1 10) is 40

We can also build modfindall, which finds all the x € [xmin, xmax] such that xz € [lo, hi]. Because there might be a very
large number, it stops after finding the first 100.

= op modfindall (xmin xmax ¢ m lo hi) =
all = ()
:while 1
x = modfind xmin xmax ¢ m lo hi
X < 0: all
all = all, x

(count all) >= 100: all
xmin = x+1
rend

(modfindall 21 100 13 256 1 10) is 40 79 99
Because modfind and modfindall both call modfind O(1) times, they both run in O(log m) time.

Modular Proof

Now we are ready to analyze individual powers.

12

Fast Unrounded Scaling: Proof by Ivy

For a given pm, b, and m, we want to verify that for all x € [2b - Zb), we have middle > 2, or equivalently,
middle || bottom = x - pm mod 2°*™ > 2°*1. We can use either modmin or modfind to do this. Let’s use modmin, so we can

show how close we came to failing.

We'll start with a function checka to check a single power, and showl to format its result:

. # (b m) checkl p returns (p pm x middle fail) where pm is (pm p).
If there is a counterexample to p, x is the first one,
middle is (xxpm)'s middle bits, and fail is 1.
If there is no counterexample, x middle fail are 0 0 @.

op (b m) checkl p =

X =
middle =
p (pm p) x middle (middle <

2)

showl formats the result of checkl.
op showl (p pm x middle fail) =
p (hex pm) (hex x) (hex middle) ('.X '[faill)

showl 64 64 checkl 200

200 Oxa738c6bebbl2d16cb428f8ac016561dc Oxffe389b3cdb6c3dO 0x34 .

For p = 200, no 64-bit input produces a 64-bit middle less than 2.

On the other hand, for p = —1, we can verify that check1 finds a multiple of 5 that zeroes the middle:

w showl 64 64 checkl -1

-1 Oxccccceccceccccccceccccccccccccced 0x8000000000000002 0x0 X

Let’s check more than one power, gathering the results into a matrix:

a

op (b m) check ps =
op show table =

show 64 64 check seq 25 35

25
26
27
28
29
30
31
32
33
34
35

0x84595161401484a00000000000000000
0xa56fa5b99019a5c80000000000000000
Oxcecb8f271f4200f3a0000000000000000
0x813f3978f89409844000000000000000
0xal8f07d736b90be55000000000000000
0xc9f2c9cd04674edead00000000000000
Oxfc6f7c40458122964d00000000000000
0x9dc5ada82b70b59df020000000000000
0xc5371912364ce3056c28000000000000
0xf684df56c3e01bc6c732000000000000
0x9a130b963a6c115c3c7f400000000000

mix b m checkl@ ps
mix showl@ table

OXx8000000000000000
Ox8000000000000000
Ox8000000000000000
OxecO3clalaa24cco7
Oxe06076f9cb96fedd
Oxfbd9be9d5bc8934e
0x93997b98618e62al
Oxd0808609f474615a
0Xxc97002677c2ded3f
Oxc97002677c2ded3f
Oxfdo73be688a7dbaa

13

modmin (2%xb-1) ((2%kb)-1) (pm p) (2%xb+m)
((x x pm p) mod 2%xb+m) >> b

ox0 X
0x0 X
ox0 X
ox1 X
0x5 .
Ox1 X
oxo X
0x2 .
ox0 X
0x0)(
0x3 .

Fast Unrounded Scaling: Proof by Ivy

Now let’s write code to show just the start and end of a table, to avoid very long outputs:

(>

op short table

(count table) <= 15: table
(5 take table)

short show 64 64 check seq 25 95

25
26
27
28
29
91
92
93

94
95

We can see that most powers are problematic for b = 64, m = 64, which is why we’re not trying to prove that general case.

0x84595161401484a00000000000000000
0xa56fa5b99019a5c80000000000000000
Oxcecb8f27f4200f3a0000000000000000
0x813f3978189409844000000000000000
0xal8f07d736b90be55000000000000000

0x9d174b2dcec0e47b62eb0d64283f9c77
0xc45d1df942711d9a3bas5dobd324f8395
Oxf5746577930d6500ca8f44ec7ee3647a
0x9968bf6abbe85f207e998b13cf4elecc
Oxbfc2ef456ae276e89e3fedd8c321a67f

,% ((count tablel@])

rho box

Ox80000000OCOOO000
Ox8000000000000000
Ox8000000000000000
OxecO3clalaa24cc97
0xe06076f9cb96fedd

Oxde861b1f480d3b9e
0xe621ch57290a897f
Oxabbcl0caddds53eff
Oxd0@llcce372153a65
Oxa674a3e92810fb84

Let’s make it possible to filter the table down to just the bad powers:

a

op bad table

op sel x = x sel iota count x
table[sel tablel;4]

= 0]

short show bad 64 64 check seq —400 400

-400
-399
-398
-397
-395
395
397
398

399
400

Ox95fe7e07c91efafa3931b850df08e739
Oxbb7e1d89bb66b9b8c77e€266516ch2107
Oxea5dad4ec2a406826f95daffe5c7de949
0x927a87139a6841185bda8dfef9ceblce
Oxe4df730eal42e5b60f857dde6652f5d1

Ox8f2bd391334827e8c5874cc0ec691bad
Oxdfb47aa8c020be5bb4a367ed71643b2a
Ox8bd0cca9781476f950e620f466deadfb
Oxaec4ffd3d61994b7a51fa93180964e39
Oxda763fc8ch9ff9e58e67937deObbelc?

0xe4036416c4b21bd6
0xe4036416c4b21bd6
0xe4036416c4b21bd6
0xfcdbdolbdf2d3eb2
0x99535e222a18bcé6d

Oxa462c66df06d90e3
0x90ae62dc5a2282dd
0xdObe819ch0f1092e
Oxa6fecel6f3f40758
0x8598a4df299005e0

Ox0
Ox0
Ox0
Ox1
Ox5
Ox1
Ox0
Ox1

Ox0
Ox0

Ox0
Ox0
0Ox0
Ox0
Ox0
Ox0
Ox0
0Ox0

Ox0
0Ox0

)
-5

'),

XXX X

XXX XX

XXX X XX XXX

(-5 take table)

Now we have everything we need. Let’s write a function to try to prove that scale is correct for a given b and m.

a

This function builds a table of all the bad powers for b, m. If the table is empty, it prints that the settings have been proved. If

op prove (b m)

(text 127-m),

table = bad b m check (seq -400 -28), (seq 28 400)
what = 'b=', (text b), ' m=', (text m), ' t=',
(count table) == @: print '™ proved ' what

print 'X disproved' what
print short show table

not, it prints that the settings are unproven and prints some of the questionable powers.

14

'+

5

Fast Unrounded Scaling: Proof by Ivy
If we try to prove 64, 64, we get many unproven powers.

. prove 64 64

X disproved b=64 m=64 t=63+

-400 0x95fe7e07c9lefafa3931b850df08e739 0xe4036416c4b21bd6 Ox0O
-399 0Oxbb7e1d89bb66b9b8c77e266516ch2107 0xe4036416c4b21bd6 Ox0
-398 Oxea5da4ec2a406826f95daffe5c7de949 0xe4036416c4b21bd6 Ox0
-397 0x927a87139a6841185bda8dfef9ceblce Oxfcdbd0lbdf2d3eb2 0x0
-395 0Oxe4df730eal42e5b60f857dde6652f5d1 0x99535e222a18bced 0Ox0

395 0x8f2bd39f334827e8c5874ccOec691bad 0xad462c66df06d90e3 Ox0O
397 0Oxdfb47aa8c020be5bb4a367ed71643b2a 0x90ae62dc5a2282dd 0x0
398 0x8bd0cca9781476f950e620f466deadfb OxdObe819cb0f1092e Ox0O
399 Oxaec4ffd3d61994b7a51fa93180964e39 Oxacfecelef3f40758 Ox0
400 0xda763fc8ch9ff9e58e67937deObbelc7 0x8598a4df299005e0 0x0O

XXX X XX XXX

Large Powers, Printing

For printing, we need to prove b = 55, m = 66.

. prove 55 66

proved b=55 m=66 t=61+}
It works! In fact we can shorten the middle to 64 bits before things get iffy:

— prove 55 66
prove 55 65
prove 55 64
prove 55 63
prove 55 62

proved b=55 m=66 t=61+
proved b=55 m=65 t=62+)}
proved b=55 m=64 t=63+
disproved b=55 m=63 t=64+
167 0xd910f7ff28069da41b2bal518094dad5 Ox7b6e56a6b7fd53 0x0 X
disproved b=55 m=62 t=65+J
167 0xd910f7ff28069da41b2bal518094dad5 Ox7b6e56a6b7fd53 0x0 X
201 0xd106f86e69d785c7e13336d701beba53 0x68224666341b59 0x1 X
211 0xf356f7ebf83552fe0583f6b8c4124d44 0x69923a6ce74f07 0x0 X

Lemma 9. For p € [—400, —28] U [28,400], b < 55, and m > 66, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.

Proof. We calculated above that middle > 2. By Lemma 4, Scale(x, e, p) computes uscale(x, e, p). i

Large Powers, Parsing

For parsing, we want to prove b = 64, m = 73.

. prove 64 73

proved b=64 m=73 t=54+}

15

Fast Unrounded Scaling: Proof by Ivy

It also works! But we’re right on the edge. Shortening the middle by one bit breaks the proof:

. prove 64 73

prove 64 72
proved b=64 m=73 t=54+%

X disproved b=64 m=72 t=55+J
-93 0x857fcae62d8493a56T70a4400c562ddc Oxf324bb0720dbe7fe 0x1 X

Lemma 10. For p € [—400, —28] U [28,400], b < 64, and m > 73, Scale(x, e, p) computes uscale(x, e, p) and
middle # 1.

Proof. We calculated above that middle > 2. By Lemma 4, Scale(x, e, p) computes uscale(x, e, p). il

Bonus: 64-bit Input, 64-bit Output?

We don’t need full 64-bit input and 64-bit output, but if we did, there is a way to make it work at only a minor performance
cost. It turns out that for 64-bit input and 64-bit output, for any given p, considering all the inputs x that cause middle = 0,

either all the middles overflowed or none of them did. So we can use a lookup table to decide how to interpret middle = 0.
The implementation steps would be:

1. Note that the proofs remain valid without middle # 1.

2. Don’t make use of the middle # 1 optimization in the uscale implementation.

3. When p is large, force the sticky bit to 1 instead of trying to compute it from middle.

4. When middle = 0 for a large p, consult a table of hint bits indexed by p to decide whether middle has overflowed. If

so, decrement top.
Here is a proof that this works.

First, define topdi ff which computes the difference between top and top® for a given b, m, p.

. # topdiff computes top - topR.
op (b mp) topdiff x =
top = (X * pm p) >> b+m
topR = (floor x *x (1@%xp) / 2xkpe p) >> b+m
top — topR

16

Fast Unrounded Scaling: Proof by Ivy

Next, define hint, which is like checkl in that it looks for counterexamples. When it finds counterexamples, it computes
topd1 ff for each one and reports whether they all match, and if so what their value is.

- # (b m) hint p returns (p pm x middle fail) where pm is (pm p).

If there is a counterexample to p, x is the first one,

middle is (xxpm)'s middle bits, and fail is 1, 2, or 3:

1 if all counterexamples have top = topR

2 if all counterexamples have have top = topR+1

3 if both kinds of counterexamples exist or other counterexamples exist

If there is no counterexample, x middle fail are 0 0 0.

op (b m) hint p =
x = modmin (2xkb-1) ((2%xb)-1) (pm p)
middle = ((x * pm p) mod 2xxb+m) >> b
middle >= 1: p (pm p) x middle @
all = modfindall (2%xxb-1) ((2%xxb)-1) (pm p) (2xkb+m) @ ((2%xb)-1)

(2xxb+m)

diffs = b m p topdiff@ all

equal = or/ diffs ==

carry = or/ diffs ==

other = ((count all) >= 100) or or/ (diffs != @) and (diffs != 1)
p (pm p) x middle ((1xequal)|(2x*carry)|(3%other))

Finally, define hints, which is like show check. It gets the hint results for all large p and prints a summary of how many
were in four categories: no hints needed, all hints 0, all hints 1, mixed hints.

. op hints (b m) =

table = mix b m hint@ (seq -400 -28), (seq 28 400)
(box 'b=', (text b), ' m="', (text m)), (+/ mix table[;4] ==@ iota 4)

Now we can try b = 64, m = 64:

- hints 64 64

b=64 m=64 452 184 110 ©

The output says that 452 powers don’t need hints, 184 need a hint that top[R = top, and 110 need a hint that topR =top — 1.
Crucially, 0 need conflicting hints, so the hinted algorithm works for b = 64, m = 64.

Of course, that leaves 64 top bits, and since one bit is the ¥4 bit, this is technically only a 63-bit result. (If you only needed a

truncated 64-bit result instead of a rounded one, you could use e — 1 and read the %2 bit as the final bit of truncated result.)

It turns out that hints are not enough to get a full 64 bits plus a % bit, which would leave a 63-bit middle. In that case, there

turn out to be 63 powers where middle = 0 is ambiguous:

O Lints 64 63

b=64 m=63 241 283 159 63

However, if you only have 63 bits of input, then you can have the full 64-bit output:

O lints 63 64

b=63 m=64 601 86 59 0

Completed Proof

17

Fast Unrounded Scaling: Proof by Ivy

Theorem 1. For the cases used in the printing and parsing algorithms, namely p € [—400, 400] with (printing)
b < 55,m > 66 and (parsing) b < 64, m > 73, Scale is correct and middle # 1.

Proof. We proved these five cases:
e Lemma 3. For exact results, Scale computes uscale(x, e, p) and middle # 1.
e Lemma 7. For inexact results and p € [0,27] and b < 64, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.
e Lemma 8. For inexact results, p € [—27,—1], and b < 64, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.

e Lemma 9. For p € [—400, —28] U [28,400], b < 55, and m > 66, Scale(x, e, p) computes uscale(x, e, p) and
middle # 1.

e Lemma 10. For p € [—400, —28] U [28,400], b < 64, and m > 73, Scale(x, e, p) computes uscale(x, e, p) and
middle # 1.

The result follows directly from these. 1

A Simpler Proof

The proof we just finished is the most precise analysis we can do. It enables tricks like the hint table for 64-bit input and 64-bit
output. However, for printing and parsing, we don’t need to be quite that precise. We can reduce the four inexact cases to two
by analyzing the exact pm® values instead of our rounded pm values. We will show that the spacing around the exact integer
results is wide enough that all the non-exact integers can’t have middles near 0 or 2™. The idea of proving a minimal spacing
around the exact integer results is due to Michel Hack, although the proof is new.

Specifically, we can use the same machinery we just built to prove that middle® € [2,2™*?] for inexact results with
p € [—400, 400], eliminating the need for Lemmas 7 and 8 by generalizing Lemmas 9 and 10. To do that, we analyze the non-
zero results of x - pm® mod 2°+™. (If that expression is zero, the result is exact, and we are only analyzing the inexact case.)

Let’s start by defining gcd and pmR, which returns pn pd such that me = pn/pd.

Qopxgcdy=

not xxy: X+y
X > y: (x mod y) gcd y
X <= y: x gcd (y mod x)

(15 gcd 40) is 5

denom = (10%*—(0 min p)) *x (2xx(0 max e))
num denom / num gcd denom

(pmR -5) is (2%%x139) (5%x*5)

18

Fast Unrounded Scaling: Proof by Ivy

Let’s also define a helper zlog that is like log, | x| except that zlog 0 is 0.

. op zlog x =
X == 0: 0
2 log abs x

(zlog 4) is 2
(zlog @) is @

Now we can write an exact version of check1. We want to analyze x - pm® mod 2°*™, but to use integers, instead we analyze

Xz = X - pn mod pd- 2b*™ We find the x € [xmin, xmax] with minimal Xg > 0 and the y € [xmin, xmax] with maximal

Y&- Then we convert those to middle values by dividing by pd - 2b.

. op (b m) checklR p =

pn pd = pmR p

xmin = 2xxb-1

xmax = (2%xb)-1

M = pd *x 2xkb+m

X = modminge xmin xmax pn M 1
X<0: p00o0oaOo

y = modmax xmin xmax pn M
xmiddle ymiddle = float ((x y * pn) mod M) / pd
p x y xmiddle ((xmiddle < 2) or (ymiddle > M-2))

op (b m) checkR ps = mix b m checklR@ ps

showl 64 64 checkl 200
showl 64 64 checklR 200

* 2%kb

200 Oxa738c6bebbl12d16cb428f8ac016561dc Oxffe389b3cdb6c3d0 0x34 .

200 Oxffe389b3cdb6c3dd 0x8064104249b3c03e 0x1.9c2145p+05 .

. op proveR (b m) =
table = bad b m checkR (seq -400 400)

what = 'b=', (text b), ' m=', (text m), ' t=', text ((127-1)-m),'+5'

(count table) == 0: print '@ proved ' what
print 'X disproved' what
print short show table

O brover 55 66
proveR 55 62
proveR 64 73
proveR 64 72

proved b=55 m=66 t=60 +

X disproved b=55 m=62 t=64 +

167 0x7b6e56a6b7fd53 0x463bcl7af3f48e 0x1.817blcp-02 X
201 0x68224666341b59 0x588220995c452a 0x1.8e0a91p-02 X
211 0x69923a6¢ce74f07 0x597216983bdcla 0x1.14fbd3p-03 X
221 0Ox404a552daaaeea 0x50ad765f4fd461 Ox1.de3812p+00 X
proved b=64 m=73 t=53 + %

X disproved b=64 m=72 t=54 + 4

-93 0xf324bb0720dbe7fe Oxc743006eaf2d0ed4f Ox1.3a8eb6p+00 X

19

Fast Unrounded Scaling: Proof by Ivy

The failures that proveR finds mostly correspond to the failures that prove found, except that proveRr is slightly more

conservative: the reported failure for p = 221 is a false positive.

- prove 55 66

prove 55 62
prove 64 73
prove 64 72

proved b=55 m=66 t=61+
X disproved b=55 m=62 t=65+
167 0xd910f7ff28069da41b2bal518094dad5 Ox7b6e56a6b7fd53 0x0 X
201 0xd106f86e69d785c7e13336d701beba53 0x68224666341b59 0x1 X
211 0xf356f7ebf83552fe0583f6b8c4124d44 0x69923a6ce74f07 0x0 X
proved b=64 m=73 t=54+}

disproved b=64 m=72 t=55+J
-93 0x857fcae62d8493a56F70a4400c562ddc Oxf324bb0720dbe7fe 0x1 X

Lemma 11. For p € [—400,400], b < 55, and m > 66, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.

Proof. Our Ivy code proveR 55 66 confirmed that middle® € [2,2™ — 2]. By Lemma 5 and Lemma 6, Scale(x, e, p)
computes uscale(x, e, p) and middle # 1. &

Lemma 12. For p € [—400,400], b < 64, and m > 73, Scale(x, e, p) computes uscale(x, e, p) and middle # 1.

Proof. Our Ivy code proveR 64 73 confirmed that middle® € [2,2™ — 2]. By Lemma 5 and Lemma 6, Scale(x, e, p)
computes uscale(x, e, p) and middle # 1. &

Theorem 2. For the cases used in the printing and parsing algorithms, namely p € [—400, 400] with (printing)
b < 55,m > 66 and (parsing) b < 64, m > 73, Scale is correct and middle # 1.

Proof. Follows from Lemma 3, Lemma 11, and Lemma 12. &

Related Work

Parts of this proof have been put together in different ways for other purposes before, most notably to prove that exact
truncated scaling can be implemented using 128-bit mantissas in floating-point parsing and printing algorithms. This section
traces the history of the ideas as best I have been able to determine it. In these summaries, I am using the terminology and
notation of this post—such as top, middle, bottom, xg and pm®*—for consistency and ease of understanding. Those terms and

notations do not appear in the actual related work.

This section is concerned with the proof methods in these papers and only touches on the actual algorithms to the extent that

they are relevant to what was proved. The main post’s related work discusses the algorithms in more detail.
Paxson 1991
- Vern Paxson, “A Program for Testing IEEE Decimal-Binary Conversion”, class paper 1991.

The earliest work that I have found that linked modular minimization to floating-point conversions is Paxson’s 1991 paper,
already mentioned above and written for one of William Kahan’s graduate classes. Paxson credits Tim Peters for the modular

minimization algorithms, citing an email discussion on validgh!numeric-interest@uunet.uu.net in April 1991:

In the following section we derive a modular equation which if minimized produces especially difficult
conversion inputs; those that lie as close as possible to exactly half way between two representable outputs. We

20

file:///Users/rsc/src/rsc.io/blog/_static/fp#related
https://www.icir.org/vern/papers/testbase-report.pdf

Fast Unrounded Scaling: Proof by Ivy

then develop the theoretical framework for demonstrating the correctness of two algorithms developed by Tim
Peters for solving such a modular minimization problem in O(log(N)) time.

I have been unable to find copies of the numeric-interest email discussion.

Peters broke down the minimization problem into a two step process, which I followed in this proof. Using this post’s notation

(xg = x-c mod m), the two steps in Paxson’s paper (with two algorithms each) are:

e FirstModBelow: Find the first x > 0 with x; < hi.
FirstModAbove: Find the first x > 0 with x; > lo.

e ModMin: Find the x € [xmin, xmax] that maximizes x; < hi.
ModMax: Find the x € [xmin, xmax] that minimizes xz > lo.

(The names ModMin and ModMax seem inverted from their definitions, but perhaps “Min” refers to finding something below

a limit and “Max” to finding something above a limit. They are certainly inverted from this post’s usage.)
In contrast, this post’s algorithms are;

e modfirst: Find the first x > 0 with xg € [lo, hi].

e modfind: Find the first x € [xmin, xmax] with xg € [lo, hi].

e modmin: Find the x € [xmin, xmax] that minimizes xg.

e modminge: Find the x € [xmin, xmax] that minimizes xg > lo.
e modmax: Find the x € [xmin, xmax] that maximizes xp.

It is possible to use modfirst to implement Paxson’s FirstModBelow and FirstModAbove, and vice versa, so they are

equivalent in power.

In Paxson’s paper, the implementation and correctness of FirstModBelow and FirstModAbove depend on computing the
convergents of continued fractions of ¢/m and proving properties about them. Specifically, the result of FirstModBelow must
be the denominator of a convergent or semiconvergent in the continued fraction for ¢/m, so it suffices to find the last even
convergent p,;/q,; such that (qy)g > hibut (qy 4 1))g < hi, and then compute the correct qy; + k - gy; 4 ; by looking at how
much (g,;; 1)g subtracts from (q,;)g and subtracting it just enough times. I had resigned myself to implementing this
approach before I found David Wirn’s simpler proof of the direct GCD-like approach in modf1irst. The intermediate steps in
GCD(p, q) are exactly the continued fraction representation of p/g, so it is not surprising that both GCDs and continued

fractions can be used for modular search.

No matter how modfirst is implemented, the critical insight is Peters’s observaton that “find the first” is a good building

block for the more sophisticated searches.

Paxson’s ModMin/ModMazx are tailored to a slightly different problem than we are solving. Instead of analyzing a particular
multiplicative constant (a specific pm or pm" value), Paxson is looking directly for decimal numbers as close as possible to
midpoints between binary floating-point numbers and vice versa. That means finding xy near m/2 modulo m. This post’s
proof is concerned with those values as well, but also the ones near integers. So we look for X near zero modulo 2m, which is
a little simpler. Paxson couldn’t use that because it would find numbers near zero modulo m in addition to numbers near m/2
modulo m. The former are especially easy to round, so Paxson needs to exclude them. (In contrast, numbers near zero

modulo m are a problem for Scale because the caller might want to take their floor or ceiling.)
Hanson 1997

- Kenton Hanson, “Economical Correctly Rounded Binary Decimal Conversions”, published online 1997.

21

https://web.archive.org/web/20000607192440/http://www.dnai.com/~khanson/ECRBDC.html

Fast Unrounded Scaling: Proof by Ivy

The next analysis of floating-point rounding difficulty that I found is a paper published on the web by Kenton Hanson in
1997, reporting work done earlier at Apple Computer using a Macintosh Quadra, which perhaps dates it to the early 1990s.
Hanson’s web site is down and email to the address on the paper bounces. The link above is to a copy on the Internet Archive,

but it omits the figures, which seem crucial to fully understanding the paper.

Hanson identified patterns that can be exploited to grow short “hard” conversions into longer ones. Then he used those
longest hard conversions as the basis for an argument that conversion works correctly for all conversions up to that length:
“Once this worst case is determined we have shown how we can guarantee correct conversions using arithmetic that is slightly
more than double the precision of the target destinations.”

Hanson focused on 113-bit floating-point numbers, using 256-bit mantissas for scaling, and only rounding conversions. I
expect that his approach would have worked for proving that 53-bit floating-point numbers can be converted with 128-bit

mantissas, but I have not reconstructed it and confirmed that.

Hack 2004

- Gordon Slishman, “Fast and Perfectly Rounding Decimal/Hexadecimal Conversions”, IBM Research Report, April 1990.

- PH. Abbott et al., “Architecture and software support in IBM S/390 Parallel Enterprise Servers for IEEE Floating-Point
arithmetic”, IBM Journal of Research and Development, September 1999.

- Michel Hack, “On Intermediate Precision Required for Correctly-Rounding Decimal-to-Binary Floating-Point Conversion’,
IBM Technical Paper, 2004.

The next similar discovery appears to be Hack’s 2004 work at IBM.

In 1990, Slishman had published a conversion method that used floating-point approximations, like in this post. Slishman
used a 16-bit middle and recognized that a non-0xFFFF middle implied the correctness of the top section. His algorithm fell
back to a slow bignum implementation when middle was ©xFFFF and carry error could not be ruled out (approximately 1/2'°
of the time). (Hack defined pm to be a floor instead of a ceiling, so the error condition is inverted from ours.)

In 1999, Abbott ef al. (including Hack) published a comprehensive article about the S/390’s new support for IEEE floating-
point (as opposed to its IBM hexadecimal floating point). In that article, they observed (like Paxson) that difficult numbers
can be generated by using continued fraction expansion of pm" values. They also observed that bounding the size of the
continued fraction expansion would bound the precision required, potentially leading to bignum-free conversions.

Following publication of that article, Alan Stern initiated “a spirited e-mail exchange during the spring of 2000” and “pointed
out that the hints at improvement mentioned in that article were still too conservative” As a result of that exchange, Hack

launched a renewed investigation of the error behavior, leading to the 2004 technical report.

HacK’s report only addresses decimal-to-binary (parsing) with a fixed-length input, not binary-to-decimal (printing), even
though the comments in the 1999 article were about both directions and the techniques would apply equally well to binary-to-
decimal.

In the terminology of this post, Hack proved that analysis of the continued fraction for a specific pm® can establish a lower
bound L such that middie® Il bottom®™ < L if and only if middle® [l bottom™ = 0. For an n-digit decimal input,
L = 1/(10" - (k + 2)) where k is the maximum partial quotient in the continued fraction expansion of me following certain

convergents.
Hack summarizes:

Using Continued Fraction expansions of a set of ratios of powers of two and five we can derive tight bounds on
the intermediate precision required to perform correctly-rounding floating-point conversion: it is the sum of

22

https://en.wikipedia.org/wiki/Macintosh_Quadra
https://mp7.watson.ibm.com/f55d084fadf9ae59852574ab0058f749.html
https://ieeexplore.ieee.org/document/5389154
https://ieeexplore.ieee.org/document/5389154
https://dominoweb.draco.res.ibm.com/reports/rc23203.pdf
https://en.wikipedia.org/wiki/IBM_hexadecimal_floating-point

Fast Unrounded Scaling: Proof by Ivy

three components: the number of bits in the target format, the number of bits in the source format, and the
number of bits in the largest partial quotient that follows a partial convergent of the “right” size among those
Continued Fraction expansions. (This is in addition to the small number of bits needed to cover computational

loss, e.g. when multiple truncating or rounding multiplications are performed.)

When both source and target precision are fixed, the set of ratios to be expanded grows linearly with the target
exponent range, and is small enough to permit a simple exhaustive search, in the case of the IEEE 754 standard
formats: the extra number of bits (3rd component of the sum mentioned above) is 11 for 19-digit Double

Precision and 13 for 36-digit Extended Precision.

I admit to discomfort with both Paxson’s and Hack’s use of continued fraction analysis. The math is subtle, and it seems easy
to overlook a relevant case. For example Paxson needs semiconvergents for FirstModBelow but Hack does not explicitly
mentijon them. Even though I trust that both Paxson’s and Hack’s results are correct, I do not trust myself to adapt them to
new contexts without making unjustified mathematical assumptions. In contrast, the explicit GCD-like algorithm in
modfirst and explicit searches based on it seem far less sophisticated and less error-prone to adapt.

Giulietti 2018

- Raffaello Giulietti, “The Schubfach way to render doubles,” published online, 2018, revised 2021.
- Dmitry Nadhezin, nadezhin/verify-todec GitHub repository, published online, 2018.

Raffaello Giulietti developed the Schubfach algorithm while working on Java bug JDK-4511638, that Double. toString
sometimes returned non-shortest results, most notably ‘9.999999999999999¢22’ for 1e23. Giulietti’s original solution
contained a fallback to multiprecision arithmetic in certain cases, and he wrote a paper proving the solution’s correctness (I
have been unable to find that original code, nor the first version of the paper, which was apparently titled “Rendering doubles

in Java®)

Dmitry Nadhezin set out to formally check the proof using the ACL2 theorem prover. During that effort, Giulietti and
Nadhezin came across Hack’s 2004 paper and realized they could remove the multiprecision arithmetic entirely. Nadhezin
adapted Hack’s analysis and proved Giulietti’s entire conversion algorithm correct using the ACL2 theorem prover. As part of
that proof, Nadhezin proved (and formally verified) that the spacing around exact integer results that might arise during
Schubfach’s printing algorithm is at least ¢ = 27 in either direction allowing the use of 126-bit pm values. (Using 126 instead
of 128 is necessary because Java has only a signed 64-bit integer type.)

Adams 2018
- Ulf Adams, “Ryti: Fast Float-to-String Conversion”, ACM PLDI 2018.

Independent of Giulietti’s work, Ulf Adams developed a different floating-point printing algorithm named Ry, also based on
128-bit (or in Java, 126-bit) pm values. Adams proved the correctness of a computation for | x/10°| using [mej for positive p
and [pm®] for negative p. Doubling x provides the % bit, but Rya does not compute the sticky bit as part of that computation.
Instead, Ryl computes an exactness bit (the inverse of the sticky bit) by explicitly testing x mod 2” = 0 for p > 0 and

x mod 57P = 0 for p < 0. The latter is done iteratively, requring up to 23 64-bit divisions in the worst case. (It is possible to
reduce this to a single 64-bit multiplication by a constant obtained from table lookup, but Ry does not.)

Like any of these proofs, Adams’s proof of correctness of the truncated result needs to analyze specific pm or pm" values.
Adams chose to analyze the pm values and defined a function minmax_euclid(a, b, M) that returns the minimum and
maximum values of x - @ mod b for x € [0, M'] for some M’ > M chosen by the algorithm. The paper includes a dense page-

long proof of the correctness of minmax_euclid, but it must contain a mistake, since minmax_euclid turns out not to be

23

https://drive.google.com/file/d/1IEeATSVnEE6TkrHlCYNY2GjaraBjOT4f/edit
https://github.com/nadezhin/verify-todec
https://bugs.openjdk.org/browse/JDK-4511638
https://github.com/nadezhin/verify-todec/blob/master/README.md
https://dl.acm.org/doi/10.1145/3192366.3192369
https://go.googlesource.com/go/+/refs/tags/go1.26rc1/src/internal/strconv/math.go#93

Fast Unrounded Scaling: Proof by Ivy

correct. As one example, Junekey Jeon has pointed out that minmax_euc11d(3, 8, 7) returns a minimum of 1 and maximum

of 0. We can verify this by implementing minmax_euclid in Ivy:

. op minmax_euclid (a b M) =
stuv=1001

:while 1
:while b >= a
buv=buv-ast
(-u) >=M: :ret a b
:end
b ==0: :ret 1 (b-1)

:while a >= b
ast=ast-buv
s > M: :ret a b
:end
a ==0: :ret 1 (b-1)
:end

minmax_euclid 3 8 7

10

Jeon also points out that the trouble begins on the first line of Adams’s proof, which claims that a < (—a) mod b, but that is
false for a > b/2. However, the general idea is right, and Adams’s Ryt repository contains a more complex and apparently
fixed version of the max calculation. Even corrected, the results are loose in two directions: they include x both smaller and

larger than the exact range [25071 20 —1).
Jeon 2020

- Junekey Jeon, “Grisu-Exact: A Fast and Exact Floating-Point Printing Algorithm”, published online, 2020.

24

https://github.com/ulfjack/ryu/blob/6a02945a5abd/src/main/java/info/adams/ryu/analysis/EuclidMinMax.java#L83
https://github.com/ulfjack/ryu/blob/6a02945a5abd/src/main/java/info/adams/ryu/analysis/EuclidMinMax.java#L83
https://fmt.dev/papers/Grisu-Exact.pdf

Fast Unrounded Scaling: Proof by Ivy

In 2020, Jeon published a paper about Grisu-Exact, an exact variation of the Grisu algorithm without the need for a bignum
fallback algorithm. Jeon relied on Adams’s general proof approach but pointed out the problems with minmax_euclid
mentioned in the previous section and supplied a replacement algorithm and proof of its correctness.

a

op minmax_euclid (a b M) =
modulo = b
su=1080
:while 1
q = (ceil b/a) - 1
bl = b - g*a
ul = u + g*s
1if M < ul
k = floor (M-u) / s
iret a ((modulo - b) + kxa)
rend
p = (ceil a/bl) -1
al = a - pxbl
sl = s + px*xul
1if M < s1
k = floor (M-s) / ul
:ret (a—-kxbl) (modulo - b1l)

rend
:if (bl == b) and (al == a)
1if M < s1 + ul
:ret al (modulo - b1l)
relse
:ret @ (modulo - bl)
:end
rend
absu=alblslul

rend

minmax_euclid 3 8 7
17

Lemire 2023

- Daniel Lemire, “Number Parsing at a Gigabyte per Second”, Software—Pratice and Experience, 2021.
- Noble Mushtak and Daniel Lemire, “Fast Number Parsing Without Fallback”, Software—Pratice and Experience, 2023.

In March 2020, Lemire published code for a fast floating-point parser for up to 19-digit decimal inputs using a 128-bit pm,
based on an idea by Michael Eisel. Nigel Tao blogged about it in 2020 and Lemire published the algorithm in Software—

Practice and Experience in 2021.

As published in 2021, Lemire’s algorithm uses pm = | pm® | and therefore checks for middle = 2™ ~" as a sign of possible
inexactness. Upon finding that condition, the algorithm falls back to a bignum-based implementation.

In 2023, Mushtak and Lemire published a short but dense followup note proving that middle = 2™~ " is impossible, and
therefore the fallback check is unnecessary and can be removed. They address only the specific case of a 64-bit input and 73-
bit middle, making the usual continued fraction arguments to bound the error for non-exact results.

Empirically, Mushtak and Lemire’s computational proof does not generalize to other sizes. I downloaded their Python script

and changed it from analyzing N = m + b = 137 to analyze other sizes and observed both false positives and false negatives. I

25

https://arxiv.org/abs/2101.11408
https://arxiv.org/pdf/2212.06644
https://nigeltao.github.io/blog/2020/eisel-lemire.html
https://github.com/fastfloat/fast_float/blob/main/script/mushtak_lemire.py

Fast Unrounded Scaling: Proof by Ivy

believe the false negatives are from omitting semiconvergents (unnecessary for N = 137, as proved in their Theorem 2) and
the false positives are from the approach not limiting x to the range [2°7",2° — 1).

Jeon 2024
- Junekey Jeon, “Dragonbox: A New Floating-Point Binary-to-Decimal Conversion Algorithm’, published online, 2024.

In 2024, Jeon published Dragonbox, a successor to Grisu-Exact. Jeon changed from using the corrected minmax_euclid
implementation to using a proof based on continued fractions. Algorithm C.14 (“Finding best rational approximations from
below and above”) is essentially equivalent to Paxson’s algorithms. Like in Ry and Grisu-Exact, the proof only considers the
truncated computation |x - 2° - 10°| and computes an exactness bit separately.

Conclusion

This post proved that Scale can be implemented correctly using a fast approximation that involves only a few word-sized
multiplications and shifts. For printing and parsing of float64 values, computing the top 128 bits of a 64x128-bit

multiplication is sufficient.

The fact that float64 conversions require only 128-bit precision has been known since at least Hanson’s work at Apple in the
mid-1990s, but that work was not widely known and did not include a proof. Paxson used an exact computational worst case
analysis of modular multiplications to find difficult conversion cases; he did not bound the precision needed for parsing and
printing. In contrast, Hack, Giulietti and Nadhezin, Adams, Mushtak and Lemire, and Jeon all derived ways to bound the
precision needed for parsing or printing, but none of them used an exact computational worst case analysis that generalizes to
arbitrary floating-point formats, and none recognized the commonality between parsing and printing.

The approach in this post, based on Paxson’s general approach and built upon a modular analysis primitive by David Wérn, is

the first exact analysis that generalizes to arbitrary formats and handles both parsing and printing.

In this post, I have tried to give credit where credit is due and to represent others’ work fairly and accurately. I would be

extremely grateful to receive additions, corrections, or suggestions at rsc@swtch.com.

26

https://raw.githubusercontent.com/jk-jeon/dragonbox/master/other_files/Dragonbox.pdf
mailto:rsc@swtch.com

