
Fast Unrounded Scaling: Proof by Ivy

(Floating Point Formatting, Part 4)

Russ Cox

January 19, 2026

research.swtch.com/fp-proof

My post “Floating-Point Printing and Parsing Can Be Simple And Fast” depends on fast unrounded scaling, defined as:

⟨𝑥 ⟩ = ⌊2𝑥⌋ || (2𝑥 ≠ ⌊2𝑥⌋)

uscale(𝑥, 𝑒,𝑝) = ⟨𝑥 · 2𝑒 · 10𝑝 ⟩

The unrounded form of 𝑥 ∈ ℝ, ⟨𝑥 ⟩ , is the integer value of ⌊𝑥⌋ concatenated with two more bits: first, the “½ bit” from the

binary representation of 𝑥 (the bit representing 2−1; 1 if 𝑥− ⌊𝑥⌋ ≥ ½; or equivalently, ⌊2𝑥⌋ mod 2); and second, a “sticky bit”

that is 1 if any bits beyond the ½ bit were 1.

These are all equivalent definitions, using the convention that a boolean condition is 1 for true, 0 for false:

⟨𝑥 ⟩ = ⌊𝑥⌋ || (𝑥− ⌊𝑥⌋ ≥ ½) || (𝑥− ⌊𝑥⌋ ∉ 0,½) (‘||’ is bit concatenation)

= ⌊𝑥⌋ || (𝑥− ⌊𝑥⌋ ≥ ½) || (2𝑥 ≠ ⌊2𝑥⌋)

= ⌊2𝑥⌋ || (2𝑥 ≠ ⌊2𝑥⌋)

= ⌊4𝑥⌋ | (2𝑥 ≠ ⌊2𝑥⌋) (‘|’ is bitwise OR)

= ⌊4𝑥⌋ | (4𝑥 ≠ ⌊4𝑥⌋)

The uscale operation computes the unrounded form of 𝑥 · 2𝑒 · 10𝑝, so it needs to compute the integer ⌊2 ·𝑥 · 2𝑒 · 10𝑝⌋ and then

also whether the floor truncated any bits. One approach would be to compute 2 ·𝑥 · 2𝑒 · 10𝑝 as an exact rational, but we want

to avoid arbitrary-precision math. A faster approach is to use a floating-point approximation for 10𝑝: 10𝑝 ≈ 𝑝𝑚 · 2𝑝𝑒, where

𝑝𝑚 is 128 bits. Assuming 𝑥 < 264, this requires a single 64×128→192-bit multiplication, implemented by two full-width

64×64→128-bit multplications on a 64-bit computer.

The algorithm, which we will call Scale, is given integers 𝑥, 𝑒, and 𝑝 subject to certain constraints and operates as follows:

Scale(𝑥, 𝑒,𝑝):

1. Let 𝑝𝑒 = −127 − ⌈log2 10−𝑝⌉.

2. Let 𝑝𝑚 = ⌈10𝑝/2𝑝𝑒⌉, looked up in a table indexed by 𝑝.

3. Let 𝑏 = bits(𝑥), the number of bits in the binary representation of 𝑥.

4. Let 𝑚 = 𝑒 + 𝑝𝑒+ 𝑏− 1.

5. Let 𝑡𝑜𝑝 = ⌊𝑥 ·𝑝𝑚/2𝑚/2𝑏⌋,𝑚𝑖𝑑𝑑𝑙𝑒 = ⌊𝑥 ·𝑝𝑚/2𝑏⌋ mod 2𝑚, 𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑥 ·𝑝𝑚 mod 2𝑏.

Put another way, split 𝑥 ·𝑝𝑚 into 𝑡𝑜𝑝 ||𝑚𝑖𝑑𝑑𝑙𝑒 || 𝑏𝑜𝑡𝑡𝑜𝑚 where 𝑏𝑜𝑡𝑡𝑜𝑚 is 𝑏 bits, 𝑚𝑖𝑑𝑑𝑙𝑒 is 𝑚 bits, and 𝑡𝑜𝑝 is the

remaining bits.

6. Return ⟨ (𝑡𝑜𝑝 ||𝑚𝑖𝑑𝑑𝑙𝑒)/2𝑚+ 1 ⟩ , computed as 𝑡𝑜𝑝 || (𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0) or as 𝑡𝑜𝑝 || (𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2).

The initial uscale implementation in the main post uses (𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0) in its result, but an optimized version uses

(𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2).

file:///Users/rsc/src/rsc.io/blog/_static/fp-all
file:///Users/rsc/src/rsc.io/blog/_static/fp

Fast Unrounded Scaling: Proof by Ivy

2

This post proves both versions of Scale correct for the 𝑥, 𝑒, and 𝑝 needed by the three floating-point conversion algorithms in

the main post. Those algorithms are:

FixedWidth converts floating-point to decimal. It needs to call Scale with a 53-bit 𝑥, 𝑒 ∈ [−1137, 960], and

𝑝 ∈ [−307, 341], chosen to produce a result 𝑟 ∈ [0, 2 · 1018), which is at most 61 bits (62-bit output;

𝑏 = 53,𝑚 ≥ 128 − 62 = 66).

Short also converts floating-point to decimal. It needs to call Scale with a 55-bit 𝑥, 𝑒 ∈ [−1137, 960], and

𝑝 ∈ [−292, 324], chosen to produce a result 𝑟 ∈ [0, 2 · 1018), still at most 61 bits. (62-bit output;

𝑏 = 55,𝑚 ≥ 128 − 62 = 66).

Parse converts decimal to floating-point. It needs to call Scale with a 64-bit 𝑥 and 𝑝 ∈ [−343, 289], chosen to

produce a result 𝑟 ∈ [0, 254), which is at most 54 bits (55-bit output; 𝑏 = 64,𝑚 ≥ 128 − 55 = 73).

The “output” bit counts include the ½ bit but not the sticky bit. Note that for a given 𝑥 and 𝑝, the maximum result size

determines a relatively narrow range of possible 𝑒.

To start the proof, consider a hypothetical algorithm Scaleℝ that is the same as Scale except using exact real numbers.

(Technically, only rationals are required, so this could be implemented, but it is only a thought experiment.)

Scaleℝ(𝑥, 𝑒,𝑝):

1. Let 𝑝𝑒 = −127 − ⌈log2 10−𝑝⌉.

2. Let 𝑝𝑚ℝ = 10𝑝/2𝑝𝑒.

(Note: 𝑝𝑚ℝ is an exact value, not a ceiling.)

3. Let 𝑏 = bits(𝑥).

4. Let 𝑚 = − 𝑒 − 𝑝𝑒 − 𝑏− 1.

5. Let 𝑡𝑜𝑝ℝ = ⌊𝑥 ·𝑝𝑚ℝ/2𝑚/2𝑏⌋,𝑚𝑖𝑑𝑑𝑙𝑒ℝ = ⌊𝑥 ·𝑝𝑚/2𝑏⌋ mod 2𝑚, 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 𝑥 ·𝑝𝑚 mod 2𝑏.

(Note: 𝑡𝑜𝑝ℝ and 𝑚𝑖𝑑𝑑𝑙𝑒ℝ are integers, but 𝑏𝑜𝑡𝑡𝑜𝑚ℝ is an exact value that may not be an integer.)

6. Return ⟨ (𝑡𝑜𝑝ℝ || 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ)/2𝑏+𝑚+1 ⟩ , computed as 𝑡𝑜𝑝ℝ || (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0).

Using exact reals makes it straighforward to prove Scaleℝ correct.

Lemma 1. Scaleℝ computes uscale(𝑥, 𝑒,𝑝).

Fast Unrounded Scaling: Proof by Ivy

3

Proof. Expand the math in the final result:

𝑡𝑜𝑝ℝ = ⌊𝑥 ·𝑝𝑚ℝ/2𝑚/2𝑏⌋ [definition of 𝑡𝑜𝑝ℝ]

= ⌊𝑥 · 10𝑝/2𝑝𝑒/2𝑚/2𝑏⌋ [definition of 𝑝𝑚ℝ]

= ⌊𝑥 · 10𝑝/2𝑝𝑒/2−𝑒− 𝑝𝑒− 𝑏− 1/2𝑏⌋ [definition of 𝑚]

= ⌊𝑥 · 10𝑝 · 2−𝑝𝑒+ 𝑒+ 𝑝𝑒+ 𝑏+ 1− 𝑏⌋ [rearranging]

= ⌊𝑥 · 10𝑝 · 2𝑒+ 1⌋ [simplifying]

= ⌊2 ·𝑥 · 2𝑒 · 10𝑝⌋ [rearranging]

𝑚𝑖𝑑𝑑𝑙𝑒ℝ ≠ 0 or 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0 = ⌊𝑥 ·𝑝𝑚/2𝑏⌋ mod 2𝑚 ≠ 0 or 𝑥 mod 2𝑏 ≠ 0 [definition of 𝑚𝑖𝑑𝑑𝑙𝑒ℝ, 𝑏𝑜𝑡𝑡𝑜𝑚ℝ]

= 𝑥 ·𝑝𝑚ℝ mod 2𝑚+ 𝑏 ≠ 0 [simplifying]

= ⌊𝑥 ·𝑝𝑚ℝ/2𝑚+ 𝑏⌋ ≠ 𝑥 ·𝑝𝑚ℝ/2𝑚+ 𝑏 [definition of floor and mod]

= ⌊2 ·𝑥 · 2𝑒 · 10𝑝⌋ ≠ 2 ·𝑥 · 2𝑒 · 10𝑝 [reusing expansion of 𝑥 ·𝑝𝑚ℝ/2𝑚/2𝑏above]

Scaleℝ = 𝑡𝑜𝑝ℝ || (𝑚𝑖𝑑𝑑𝑙𝑒ℝ ≠ 0 or 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0) [definition of Scaleℝ]

= ⌊2 ·𝑥 · 2𝑒 · 10𝑝⌋ || ⌊2 ·𝑥 · 2𝑒 · 10𝑝⌋ ≠ 2 ·𝑥 · 2𝑒 · 10𝑝 [applying previous two expansions]

= ⟨𝑥 · 2𝑒 · 10𝑝 ⟩ [definition of ⟨ . . . ⟩]

= uscale(𝑥, 𝑒,𝑝) [definition of scale]

So Scaleℝ(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝). ∎

Next we can establish basic conditions that make Scale correct.

Lemma 2. If 𝑡𝑜𝑝 = 𝑡𝑜𝑝ℝ and (𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0) ≡ (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0), then Scale computes uscale(𝑥, 𝑒,𝑝).

Proof. Scaleℝ(𝑥, 𝑒,𝑝) = 𝑡𝑜𝑝ℝ || (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0), while Scale(𝑥, 𝑒,𝑝) = 𝑡𝑜𝑝 || (𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0). If 𝑡𝑜𝑝 = 𝑡𝑜𝑝ℝ and

(𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0) ≡ (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0), then these expressions are identical. Since Scaleℝ(𝑥, 𝑒,𝑝) computes

uscale(𝑥, 𝑒,𝑝) (by Lemma 1), so does Scale(𝑥, 𝑒,𝑝). ∎

Now we need to show that 𝑡𝑜𝑝 = 𝑡𝑜𝑝ℝ and (𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0) ≡ (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0) in all cases. We will also show that

𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1 to justify using 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2 in place of 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0 when that’s convenient.

Note that 𝑝𝑚 = ⌈𝑝𝑚ℝ⌉ = 𝑝𝑚ℝ + 𝜀0 for 𝜀0 ∈ [0, 1), and so:

𝑥 ·𝑝𝑚 = 𝑥 · (𝑝𝑚ℝ + 𝜀0)

= 𝑥 ·𝑝𝑚ℝ + 𝜀1, 𝜀1 = 𝑥 · 𝜀0 ∈ [0, 2𝑏)

𝑡𝑜𝑝 ||𝑚𝑖𝑑𝑑𝑙𝑒 || 𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑡𝑜𝑝ℝ ||𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ + 𝜀1

The proof analyzes the effect of the addition of 𝜀1 to the ideal result 𝑡𝑜𝑝ℝ ||𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ. Since 𝑏𝑜𝑡𝑡𝑜𝑚ℝ is 𝑏 bits and 𝜀1

is at most 𝑏 bits, adding 𝜀1 > 0 always causes 𝑏𝑜𝑡𝑡𝑜𝑚 ≠ 𝑏𝑜𝑡𝑡𝑜𝑚ℝ. (Talking about the low 𝑏 bits of a real number is unusual;

we mean the low 𝑏 integer bits followed by all the fractional bits: 𝑥 ·𝑝𝑚ℝ mod 2𝑏.)

The question is whether that addition overflows and propagates a carry into 𝑚𝑖𝑑𝑑𝑙𝑒 or even 𝑡𝑜𝑝. There are two main cases:

exact results (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 0) and inexact results (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0).

Exact Results

Exact results have no error, making them match Scaleℝ exactly.

Fast Unrounded Scaling: Proof by Ivy

4

Lemma 3. For exact results, Scale computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. For an exact result, 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 0, meaning 2 ·𝑥 · 2𝑒 · 10𝑝 is an integer and the sticky bit is 0. Since

𝑏𝑜𝑡𝑡𝑜𝑚ℝ is 𝑏 zero bits, adding 𝜀1 affects 𝑏𝑜𝑡𝑡𝑜𝑚 but does not carry into 𝑚𝑖𝑑𝑑𝑙𝑒 or 𝑡𝑜𝑝. Therefore 𝑡𝑜𝑝 = 𝑡𝑜𝑝ℝ and

𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑚𝑖𝑑𝑑𝑙𝑒ℝ = 0. The latter, combined with 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 0, makes (𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0) ≡ (𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0)

trivially true (both sides are false). By Lemma 2, Scale is correct. And since 𝑚𝑖𝑑𝑑𝑙𝑒 = 0, 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1. ∎

Inexact Results

Inexact results are more work. We will reduce the correctness to a few conditions on 𝑚𝑖𝑑𝑑𝑙𝑒.

Lemma 4. For inexact results, if 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0, then Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝).

Proof. For an inexact result, 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0. The only possible change from 𝑚𝑖𝑑𝑑𝑙𝑒ℝ to 𝑚𝑖𝑑𝑑𝑙𝑒 is a carry from

the error addition 𝑏𝑜𝑡𝑡𝑜𝑚ℝ + 𝜀1 overflowing 𝑏𝑜𝑡𝑡𝑜𝑚. That carry is at most 1, so 𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑚𝑖𝑑𝑑𝑙𝑒ℝ + 𝜀2) mod 2𝑚 for

𝜀2 ∈ [0, 1]. An overflow into 𝑡𝑜𝑝 leaves 𝑚𝑖𝑑𝑑𝑙𝑒 = 0. If 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0 then there can be no overflow, so 𝑡𝑜𝑝 = 𝑡𝑜𝑝ℝ. By

Lemma 2, Scale computes uscale(𝑥, 𝑒,𝑝). ∎

For some cases, it will be more convenient to prove the range of 𝑚𝑖𝑑𝑑𝑙𝑒ℝ instead of the range of 𝑚𝑖𝑑𝑑𝑙𝑒. For that we can use a

variant of Lemma 4.

Lemma 5. For inexact results, if 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [1, 2𝑚 − 2] then Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝).

Proof. If 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [1, 2𝑚 − 2], then 𝑚𝑖𝑑𝑑𝑙𝑒ℝ + 𝜀2 ∈ [1, 2𝑚 − 1], so the mod in 𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑚𝑖𝑑𝑑𝑙𝑒ℝ + 𝜀2) mod 2𝑚 does

nothing (there is no overflow and wraparound), so 𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑚𝑖𝑑𝑑𝑙𝑒ℝ + 𝜀2 ≥ 1. By Lemma 4, Scale(𝑥, 𝑒,𝑝) computes

uscale(𝑥, 𝑒,𝑝). ∎

A related lemma helps with 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Lemma 6. For inexact results, if 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [2, 2𝑚 − 2], then 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2.

Proof. Again there is no overflow, so 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ≥ 2. ∎

Now we need to prove either that 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [2, 2𝑚 − 2] or that 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 0 for all inexact results. We will consider four cases:

[Small Positive Powers] 𝑝 ∈ [0, 27] and 𝑏 ≤ 64.

[Small Negative Powers] 𝑝 ∈ [−27, −1] and 𝑏 ≤ 64.

[Large Powers, Printing] 𝑝 ∈ [−400, −28] ∪ [28, 400], 𝑏 ≤ 55, 𝑚 ≥ 66.

[Large Powers, Parsing] 𝑝 ∈ [−400, −28] ∪ [28, 400], 𝑏 ≤ 64, 𝑚 ≥ 73.

Small Positive Powers

Lemma 7. For inexact results and 𝑝 ∈ [0, 27] and 𝑏 ≤ 64, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. 5𝑝 < 263, so the non-zero bits of 𝑝𝑚ℝ fits in the high 63 bits. That implies that the 𝑏+128-bit product

𝑥 ·𝑝𝑚ℝ = 𝑡𝑜𝑝ℝ ||𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ends in 65 zero bits. Since 𝑏 ≤ 64, that means 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 0 and 𝑚𝑖𝑑𝑑𝑙𝑒ℝ’s low bit is

zero.

Fast Unrounded Scaling: Proof by Ivy

5

Because the result is inexact, 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ≠ 0, which implies 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ≠ 0 (since 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 0). Since 𝑚𝑖𝑑𝑑𝑙𝑒ℝ’s

low bit is zero, 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [2, 2𝑚 − 2]. By Lemma 5, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝). By Lemma 6, 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1. ∎

Small Negative Powers

Lemma 8. For inexact results and 𝑝 ∈ [−27, −1] and 𝑏 ≤ 64, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. Scaling by 2𝑒 cannot introduce inexactness, since it just adds or subtracts from the exponent. The only inexactness

must come from 10𝑝, specifically the 5𝑝 part. Since 𝑝 < 0 and 1/5 is not exactly representable in a binary fraction, the

result is inexact if and only if 𝑥 mod 5−𝑝 ≠ 0 (remember that −𝑝 is positive!).

Since 𝑝𝑚ℝ ∈ [2127, 2128) and 5−𝑝 < 2−2, 𝑝𝑚ℝ = 5−𝑝 · 2𝑘 for some 𝑘 ≥ 130. Since 𝑚 + 𝑏 ≤ 128,

𝑡𝑜𝑝ℝ = ⌊𝑥 · 2𝑘− (𝑚+ 𝑏)/5−𝑝⌋ and 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 2𝑚+ 𝑏 · (𝑥 · 2𝑘− (𝑚+ 𝑏) mod 5−𝑝)/5−𝑝. That is, 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ

encodes some non-zero binary fraction with denominator 5−𝑝. Note also that 𝑥 ·𝑝𝑚 is 𝑏+128 bits and the output is at

most 64 bits we have 𝑚 ≥ 64, so 2𝑚 · 2−63 ≥ 2.

That implies

𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ ∈ 2𝑚+ 𝑏 · (5−27, 1 − 5−27)

⊂ 2𝑚+ 𝑏 · (2−63, 1 − 2−63)

𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ 2𝑚 · (2−63, 1 − 2−63)

⊂ (2, 2𝑚− 2)

By Lemma 5 and Lemma 6, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1. ∎

Large Powers

That leaves 𝑝 ∈ [−400, −28] ∪ [28, 400]. There are not many 𝑝𝑚 to check—under a thousand—but there are far too many 𝑥

to exhaustively test that 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2 for all of them. Instead, we will have to be a bit more clever.

It would be simplest if we could prove that all possible 𝑝𝑚 and all 𝑥 ∈ [1, 264) result in a non-zero middle, but that turns out

not to be the case.

For example, using 𝑝 = −29, 𝑥 = 0x8e151cee6e31e067 is a problem, which we can verify using the Ivy calculator:

▶️ # hex x is the hex formatting of x (as text)
op hex x = '#x' text x

spaced adds spaces to s between sections of 16 characters
op spaced s = (count s) <= 18: s; (spaced -16 drop s), ' ', -16 take s

pe returns the binary exponent for 10**p.
op pe p = -(127+ceil 2 log 10**-p)

pm returns the 128-bit mantissa for 10**p.
op pm p = ceil (10**p) / 2**pe p

spaced hex (pm -29) * 0x8e151cee6e31e067
0x7091bfc45568750f 0000000000000000 d81262b60aa6e8b7

https://github.com/robpike/ivy

Fast Unrounded Scaling: Proof by Ivy

6

We might perhaps think the problem is that 10−29 is too close to the small negative powers, but positive powers break too:

▶️ spaced hex (pm 31) * 0x93997b98618e62a1
0x918b5cd9fd69fdc5 0000000000000000 6d00000000000000

We might yet hope that the zeros were not caused by an error carry; then as long as we force the inexact bit to 1, we could still

use the high bits. And indeed, for both of the previous examples, the zeros are not caused by an error carry: 𝑚𝑖𝑑𝑑𝑙𝑒ℝ is all

zeros. But that is not always the case. Here is a middle that is zero due to an error carry that overflowed into the top bits:

▶️ spaced hex (pm 62) * 0xd5bc71e52b31e483
spaced hex ((10**62) * 0xd5bc71e52b31e483) >> (pe 62)
0xcfd352e73dc6ddc3 0000000000000000 774bd77b38816199

0xcfd352e73dc6ddc2 ffffffffffffffff e6fdb9b19804952a

Instead of proving the completely general case, we will have to pick our battles and focus on the specific cases we need for

floating-point conversions.

We don’t need to try every possible input width below the maximum 𝑏. Looking at Scale, it is clear that the inputs 𝑥 and 𝑥 · 2𝑘

have the same 𝑡𝑜𝑝 and 𝑚𝑖𝑑𝑑𝑙𝑒, and also that 𝑏𝑜𝑡𝑡𝑜𝑚(𝑥 · 2𝑘) = 𝑏𝑜𝑡𝑡𝑜𝑚(𝑥) · 2𝑘. Since the middles are the same, the condition

𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2 has the same truth value for both inputs. So we can limit our analysis to maximum-width 𝑏-bit inputs in

[2𝑏− 1, 2𝑏). Similarly, we can prove that 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2 for 𝑚 ≥ 𝑘 by proving it for 𝑚 = 𝑘: moving more bits from the low end of

𝑡𝑜𝑝 to the high end of 𝑚𝑖𝑑𝑑𝑙𝑒 cannot make 𝑚𝑖𝑑𝑑𝑙𝑒 a smaller number.

Proving that 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2 for the cases we listed above means proving:

[Printing] (𝑏 ≤ 55, 𝑚 ≥ 66.)

For all large 𝑝 and all 𝑥 ∈ [254, 255): 𝑥 ·𝑝𝑚 mod 255+ 66 = 121 ≥ 255+ 1 = 56.

[Parsing] (𝑏 ≤ 64, 𝑚 ≥ 73.)

For all large 𝑝 and all 𝑥 ∈ [263, 264): 𝑥 ·𝑝𝑚 mod 264+ 73 = 137 ≥ 264+ 1 = 65.

To prove these two conditions, we are going to write an Ivy program to analyze each 𝑝𝑚 separately, proving that all relevant 𝑥

satisfy the condition.

Ivy has arbitrary-precision rationals and lightweight syntax, making it a convenient tool for sketching and testing

mathematical algorithms, in the spirit of Iverson’s Turing Award lecture about APL, “Notation as a Tool of Thought.” Like

APL, Ivy uses strict right-to-left operator precedence: 1+2*3+4 means (1+(2*(3+4))), and floor 10 log f means floor

(10 log f). Operators can be prefix unary like floor or infix binary like log. Each of the Ivy displays in this post is

executable: you can edit the code and re-run them by clicking the Play button (“▶️ ”). A full introduction to Ivy is beyond the

scope of this post; see the Ivy demo for more examples.

We’ve already started the proof program above by defining pm and pe. Let’s continue by defining a few more helpers.

https://dl.acm.org/doi/pdf/10.1145/1283920.1283935
https://swtch.com/ivy/demo.html

Fast Unrounded Scaling: Proof by Ivy

7

First let’s define is, an assertion for basic testing of other functions:

▶️ # is asserts that x === y.
op x is y =
 x === y: x=x
 print x '≠' y
 1 / 0

(1+2) is 3
▶️ (2+2) is 5

4 ≠ 5

input:1: division by zero

If the operands passed to is are not equal (the triple === does full vaue comparison), then is prints them out and divides by

zero to halt execution.

Next, we will set Ivy’s origin to 0 (instead of the default 1), meaning iota starts counting at 0 and array indexes start at 0, and

then we will define seq x y, which returns the list of integers [𝑥, 𝑦].

▶️)origin 0

seq x y = (x x+1 x+2 ... y)
op seq (x y) = x + iota 1+y-x

(seq -2 4) is -2 -1 0 1 2 3 4

Now we are ready to start attacking our problem, which is to prove that for a given 𝑝𝑚, 𝑏, and 𝑚, for all 𝑥,

𝑚𝑖𝑑𝑑𝑙𝑒 || 𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑥 ·𝑝𝑚 mod 2𝑏+𝑚 ≥ 2𝑏+1, implying 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2, at which point we can use Lemma 4.

We will proceed in two steps, loosely following an approach by Vern Paxson and Tim Peters (the “Related Work” section

explains the differences). The first step is to solve the “modular search” problem of finding the minimum 𝑥 ≥ 0 (the “first” 𝑥)

such that 𝑥 · 𝑐 mod 𝑚 ∈ [𝑙𝑜, hi]. The second step is to use that solution to solve the “modular minimum” problem of finding

an 𝑥 in a given range that minimizes 𝑥 · 𝑐 mod 𝑚.

Modular Search

Given constants 𝑐, 𝑚, 𝑙𝑜, and hi, we want to find the minimum 𝑥 ≥ 0 (the “first” 𝑥) such that 𝑥 · 𝑐 mod 𝑚 ∈ [𝑙𝑜, hi]. This is an

old programming contest problem, and I am not sure whether it has a formal name. There are multiple ways to derive a GCD-

like efficient solution. The following explanation, based on one by David Wärn, is the simplest I am aware of.

Here is a correct 𝑂(𝑚) iterative algorithm:

https://codeforces.com/blog/entry/90690?#comment-791032

Fast Unrounded Scaling: Proof by Ivy

8

op modfirst (c m lo hi) =

 xr x cx mx = 0 0 1 0

 :while 1

 # (A) xr ≤ hi but perhaps xr < lo.

 :while xr < lo

 xr x = xr x + c cx

 :end

 xr <= hi: x

 # (B) xr - c < lo ≤ hi < xr

 :while xr > hi

 xr x = xr x + (-m) mx

 :end

 lo <= xr: x

 # (C) xr < lo ≤ hi < xr + m

 x >= m: -1

 :end

The algorithm walks 𝑥 forward from 1, maintaining 𝑥𝑟 = 𝑥 · 𝑐 mod 𝑚:

When 𝑥𝑟 is too small, it adds 𝑐 to 𝑥𝑟 and increments 𝑥 (𝑐𝑥 = 1).

When 𝑥𝑟 is too large, it subtracts 𝑚 from 𝑥𝑟 and leaves 𝑥 unchanged (𝑚𝑥 = 0).

When 𝑥 reaches 𝑚, it gives up: there is no answer.

This loop is easily verified to be correct:

It starts with 𝑥 = 0 and considers successive 𝑥 one at a time.

While doing that, it maintains 𝑥𝑟 correctly:

If 𝑥𝑟 is too small, we must add a 𝑐 (and increment 𝑥).

If 𝑥𝑟 is too large, we must subtract an 𝑚 (and leave 𝑥 alone).

If 𝑥𝑟 ∈ [𝑙𝑜, hi], it notices and stops.

The only problem with this modfirst is that it is unbearably slow, but we can speed it up.

At (A), 𝑥𝑟 ≤ ℎ𝑖, established by the initial 𝑥𝑟 = 0 or by the end of the previous iteration.

At (B), 𝑥𝑟 − 𝑐 < 𝑙𝑜 ≤ hi < 𝑥𝑟. Because 𝑥𝑟 − 𝑐 < 𝑙𝑜, subtracting 𝑚 ≥ 𝑐 will make 𝑥𝑟 too small; that will always be followed by

at least ⌊𝑚/𝑐⌋ additions of 𝑐. So we might as well replace 𝑚 with −𝑚 + 𝑐 · ⌊𝑚/𝑐⌋, speeding future trials. We will also have to

update 𝑚𝑥, to make sure 𝑥 is maintained correctly.

At (C), 𝑥𝑟 ≤ hi < 𝑥𝑟 +𝑚, and by a similar argument, we might as well replace 𝑐 with 𝑐 −𝑚 · ⌊𝑐/𝑚⌋, updating 𝑐𝑥 as well.

Making both changes to our code, we get:

Fast Unrounded Scaling: Proof by Ivy

9

op modfirst (c m lo hi) =

 xr x cx mx = 0 0 1 0

 :while 1

 # (A) xr ≤ hi but perhaps xr < lo.

 :while xr < lo

 xr x = xr x + c cx

 :end

 xr <= hi: x

 # (B) xr - c < lo ≤ hi < xr

 m mx = m mx + (-c) cx * floor m/c

 m == 0: -1

 :while xr > hi

 xr x = xr x + (-m) mx

 :end

 lo <= xr: x

 c cx = c cx + (-m) mx * floor c/m

 c == 0: -1

 # (C) xr < lo ≤ hi < xr+m

 :end

Notice that the loop is iterating (among other things) 𝑚 = 𝑚 mod 𝑐 and 𝑐 = 𝑐 mod 𝑚, the same as Euclid’s GCD algorithm,

so 𝑂(log 𝑐) iterations will zero 𝑐 or 𝑚. The old test for 𝑥 ≥ 𝑚 (made incorrect by modifiying 𝑚) is replaced by checking for 𝑐

or 𝑚 becoming zero.

Finally, we should optimize away the small while loops by calculating how many times each will be executed:

op modfirst (c m lo hi) =

 xr x cx mx = 0 0 1 0

 :while 1

 # (A) xr ≤ hi but perhaps xr < lo.

 xr x = xr x + c cx * ceil (0 max lo-xr)/c

 xr <= hi: x

 # (B) xr - c < lo ≤ hi < xr

 m mx = m mx + (-c) cx * floor m/c

 m == 0: -1

 xr x = xr x + (-m) mx * ceil (0 max xr-hi)/m

 lo <= xr: x

 c cx = c cx + (-m) mx * floor c/m

 c == 0: -1

 # (C) xr < lo ≤ hi < xr+m

 :end

Each iteration of the outer while loop is now 𝑂(1), and the loop runs at most 𝑂(log 𝑐) times, giving a total time of 𝑂(log 𝑐),

dramatically better than the old 𝑂(𝑚).

We can reformat the code to highlight the regular structure:

▶️ op modfirst (c m lo hi) =
 xr x cx mx = 0 0 1 0
 :while 1
 xr x = xr x + c cx * ceil (0 max lo-xr)/c ; xr <= hi : x
 m mx = m mx + (-c) cx * floor m/c ; m == 0 : -1
 xr x = xr x + (-m) mx * ceil (0 max xr-hi)/m ; lo <= xr : x
 c cx = c cx + (-m) mx * floor c/m ; c == 0 : -1
 :end

(modfirst 13 256 1 5) is 20 # 20*13 mod 256 = 4 ∈ [1, 5]
(modfirst 14 256 1 1) is -1 # impossible

Fast Unrounded Scaling: Proof by Ivy

10

We can also check that modfirst finds the exact answer from case 2, namely powers of five zeroing out the middle.

▶️ (modfirst (pm -3) (2**128) 1 (2**64)) is 125
spaced hex 125 * (pm -3)
0x40 0000000000000000 0000000000000042

Modular Minimization

Now we can solve the problem of finding the 𝑥 ∈ [𝑥𝑚𝑎𝑥,𝑥𝑚𝑖𝑛] that minimizes 𝑥 · 𝑐 mod 𝑚.

Define the notation 𝑥𝑅 = 𝑥 · 𝑐 mod 𝑚 (the “residue” of 𝑥). We can construct 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] with minimal 𝑥𝑅 with the

following greedy algorithm.

1. Start with 𝑥 = 𝑥𝑚𝑖𝑛.

2. Find the first 𝑦 ∈ [𝑥+ 1,𝑥𝑚𝑎𝑥] such that 𝑦𝑅 < 𝑥𝑅.

3. If no such 𝑦 exists, return 𝑥.

4. Set 𝑥 = 𝑦.

5. Go to step 2.

The algorithm finds the right answer, because it starts at 𝑥𝑚𝑖𝑛 and then steps through every succesively better answer along

the way to 𝑥𝑚𝑎𝑥. The algorithm terminates because every search is finite and every step moves 𝑥 forward by at least 1. The

only detail remaining is how to implement step 2.

For any 𝑥 and 𝑦, (𝑥𝑅 − 𝑦𝑅) mod 𝑚 = (𝑥− 𝑦)𝑅, because multiplication distributes over subtraction. Call that the subtraction

lemma.

Finding the first 𝑦 ∈ [𝑥+ 1,𝑥𝑚𝑎𝑥] with 𝑦𝑅 < 𝑥𝑅 is equivalent to finding the first 𝑑 ∈ [1,𝑥𝑚𝑎𝑥 − 𝑥] with (𝑥+ 𝑑)𝑅 < 𝑥𝑅. By

the subtraction lemma, 𝑑𝑅 = ((𝑥+ 𝑑)𝑅 − 𝑥𝑅) mod 𝑚, so we are looking for the first 𝑑 ≥ 1 with 𝑑𝑅 ∈ [𝑚 − 𝑥𝑅,𝑚 − 1]. That’s

what modfirst does, except it searches 𝑑 ≥ 0. But 0𝑅 = 0 and we will only search for 𝑙𝑜 ≥ 1, so modfirst can safely start its

search at 0.

Note that if 𝑑𝑅 ∈ [𝑚 − (𝑥+ 𝑑)𝑅,𝑚 − 1], the next iteration will choose the same 𝑑—any better answer would have been an

answer to the original search. So after finding 𝑑, we should add it to 𝑥 as many times as we can.

The full algorithm is then:

1. Start with 𝑥 = 𝑥𝑚𝑖𝑛.

2. Use modfirst to find the first 𝑑 ≥ 0 such that 𝑑𝑅 ∈ [𝑚 − 𝑥𝑅,𝑚 − 1].

3. If no 𝑑 exists or 𝑥+ 𝑑 > 𝑥𝑚𝑎𝑥, stop and return 𝑥. Otherwise continue.

4. Let 𝑠 = 𝑚 − 𝑑𝑅, the number we are effectively subtracting from 𝑥𝑅.

5. Let 𝑛 be the smaller of ⌊(𝑥𝑚𝑎𝑥 − 𝑥)/𝑑⌋ (the most times we can add 𝑑 to 𝑥 before exceeding our limit) and ⌊𝑥𝑅/𝑠⌋ (the

most times we can subtract 𝑠 from 𝑥𝑅 before wrapping around).

6. Set 𝑥 = 𝑥+ 𝑑 ·𝑛.

7. Go to step 2.

Fast Unrounded Scaling: Proof by Ivy

11

In Ivy, that algorithm is:

▶️ op modmin (xmin xmax c m) =
 x = xmin
 :while 1
 xr = (x*c) mod m
 d = modfirst c m, m - xr 1
 (d < 0) or (x+d) > xmax: x
 s = m - (d*c) mod m
 x = x + d * floor ((xmax-x)/d) min xr/s
 :end

(modmin 10 25 13 255) is 20

The running time of modmin depends on what limits 𝑛. If 𝑛 is limited by (𝑥𝑚𝑎𝑥 − 𝑥)/𝑑 then the next iteration will not find a

usable 𝑑, since any future 𝑑 would have to be bigger than the one we just found, and there won’t be room to add it. On the

other hand, if 𝑛 is limited by 𝑥𝑅/𝑠, then it means we reduced 𝑥𝑅 at least by half. That limits the number of iterations to log2 𝑚,

and since modfirst is 𝑂(log 𝑚), modmin is 𝑂(log2 𝑚).

The subtraction lemma and modfirst let us build other useful operations too. One obvious variant of modmin is modmax,

which finds the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] that maximizes 𝑥𝑅 and also runs in 𝑂(log2 𝑚).

We can extend modmin to minimize 𝑥𝑅 ≥ 𝑙𝑜 instead, by stepping to the first 𝑥𝑅 ≥ 𝑙𝑜 before looking for improvements:

▶️ op modminge (xmin xmax c m lo) =
 x = xmin
 :if (xr = (x*c) mod m) < lo
 d = modfirst c m (lo-xr) ((m-1)-xr)
 d < 0: :ret -1
 x = x + d
 :end
 :while 1
 xr = (x*c) mod m
 d = modfirst c m (m-(xr-lo)) (m-1)
 (d < 0) or (x+d) > xmax: x
 s = m - (d*c) mod m
 x = x + d * floor ((xmax-x)/d) min (xr-lo)/s
 :end

op modmin (xmin xmax c m) = modminge xmin xmax c m 0

(modmin 10 25 13 255) is 20
(modminge 10 25 13 255 6) is 21
(modminge 1 20 13 255 6) is 1
(modminge 10 20 255 255 1) is -1

Fast Unrounded Scaling: Proof by Ivy

12

We can also invert the search to produce modmax and modmaxle:

▶️ op modmaxle (xmin xmax c m hi) =
 x = xmin
 :if (xr = (x*c) mod m) > hi
 d = modfirst c m (m-xr) ((m-xr)+hi)
 d < 0: :ret -1
 x = x + d
 :end
 :while 1
 xr = (x*c) mod m
 d = modfirst c m 1 (hi-xr)
 (d < 0) or (x+d) > xmax: x
 s = (d*c) mod m
 x = x + d * floor ((xmax-x)/d) min (hi-xr)/s
 :end

op modmax (xmin xmax c m) = modmaxle xmin xmax c m (m-1)

(modmax 10 25 13 255) is 19
(modmaxle 10 25 13 255 200) is 15

Another variant is modfind, which finds the first 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] such that 𝑥𝑅 ∈ [𝑙𝑜, hi]. It doesn’t need a loop at all:

▶️ op modfind (xmin xmax c m lo hi) =
 x = xmin
 xr = (x*c) mod m
 (lo <= xr) and xr <= hi: x
 d = modfirst c m, (lo hi - xr) mod m
 (d < 0) or (x+d) > xmax: -1
 x+d

(modfind 21 100 13 256 1 10) is 40

We can also build modfindall, which finds all the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] such that 𝑥𝑅 ∈ [𝑙𝑜, hi]. Because there might be a very

large number, it stops after finding the first 100.

▶️ op modfindall (xmin xmax c m lo hi) =
 all = ()
 :while 1
 x = modfind xmin xmax c m lo hi
 x < 0: all
 all = all, x
 (count all) >= 100: all
 xmin = x+1
 :end

(modfindall 21 100 13 256 1 10) is 40 79 99

Because modfind and modfindall both call modfind 𝑂(1) times, they both run in 𝑂(log 𝑚) time.

Modular Proof

Now we are ready to analyze individual powers.

Fast Unrounded Scaling: Proof by Ivy

13

For a given 𝑝𝑚, 𝑏, and 𝑚, we want to verify that for all 𝑥 ∈ [2𝑏− 1, 2𝑏), we have 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2, or equivalently,

𝑚𝑖𝑑𝑑𝑙𝑒 || 𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑥 ·𝑝𝑚 mod 2𝑏+𝑚 ≥ 2𝑏+1. We can use either modmin or modfind to do this. Let’s use modmin, so we can

show how close we came to failing.

We’ll start with a function check1 to check a single power, and show1 to format its result:

▶️ # (b m) check1 p returns (p pm x middle fail) where pm is (pm p).
If there is a counterexample to p, x is the first one,
middle is (x*pm)'s middle bits, and fail is 1.
If there is no counterexample, x middle fail are 0 0 0.
op (b m) check1 p =
 x = modmin (2**b-1) ((2**b)-1) (pm p) (2**b+m)
 middle = ((x * pm p) mod 2**b+m) >> b
 p (pm p) x middle (middle < 2)

show1 formats the result of check1.
op show1 (p pm x middle fail) =
 p (hex pm) (hex x) (hex middle) ('.❌ '[fail])

show1 64 64 check1 200
200 0xa738c6bebb12d16cb428f8ac016561dc 0xffe389b3cdb6c3d0 0x34 .

For 𝑝 = 200, no 64-bit input produces a 64-bit middle less than 2.

On the other hand, for 𝑝 = −1, we can verify that check1 finds a multiple of 5 that zeroes the middle:

▶️ show1 64 64 check1 -1
-1 0xcccccccccccccccccccccccccccccccd 0x8000000000000002 0x0 ❌

Let’s check more than one power, gathering the results into a matrix:

▶️ op (b m) check ps = mix b m check1@ ps
op show table = mix show1@ table

show 64 64 check seq 25 35
25 0x84595161401484a00000000000000000 0x8000000000000000 0x0 ❌
26 0xa56fa5b99019a5c80000000000000000 0x8000000000000000 0x0 ❌
27 0xcecb8f27f4200f3a0000000000000000 0x8000000000000000 0x0 ❌

28 0x813f3978f89409844000000000000000 0xec03c1a1aa24cc97 0x1 ❌
29 0xa18f07d736b90be55000000000000000 0xe06076f9cb96fe0d 0x5 .

30 0xc9f2c9cd04674edea400000000000000 0xfbd9be9d5bc8934e 0x1 ❌

31 0xfc6f7c40458122964d00000000000000 0x93997b98618e62a1 0x0 ❌
32 0x9dc5ada82b70b59df020000000000000 0xd0808609f474615a 0x2 .

33 0xc5371912364ce3056c28000000000000 0xc97002677c2de03f 0x0 ❌
34 0xf684df56c3e01bc6c732000000000000 0xc97002677c2de03f 0x0 ❌

35 0x9a130b963a6c115c3c7f400000000000 0xfd073be688a7dbaa 0x3 .

Fast Unrounded Scaling: Proof by Ivy

14

Now let’s write code to show just the start and end of a table, to avoid very long outputs:

▶️ op short table =
 (count table) <= 15: table
 (5 take table) ,% ((count table[0]) rho box '...') ,% (-5 take table)

short show 64 64 check seq 25 95
 25 0x84595161401484a00000000000000000 0x8000000000000000 0x0 ❌

 26 0xa56fa5b99019a5c80000000000000000 0x8000000000000000 0x0 ❌
 27 0xcecb8f27f4200f3a0000000000000000 0x8000000000000000 0x0 ❌
 28 0x813f3978f89409844000000000000000 0xec03c1a1aa24cc97 0x1 ❌

 29 0xa18f07d736b90be55000000000000000 0xe06076f9cb96fe0d 0x5 .

...

 91 0x9d174b2dcec0e47b62eb0d64283f9c77 0xde861b1f480d3b9e 0x1 ❌
 92 0xc45d1df942711d9a3ba5d0bd324f8395 0xe621cb57290a897f 0x0 ❌

 93 0xf5746577930d6500ca8f44ec7ee3647a 0xa6bc10ca9dd53eff 0x1 ❌
 94 0x9968bf6abbe85f207e998b13cf4e1ecc 0xd011cce372153a65 0x0 ❌
 95 0xbfc2ef456ae276e89e3fedd8c321a67f 0xa674a3e92810fb84 0x0 ❌

We can see that most powers are problematic for 𝑏 = 64, 𝑚 = 64, which is why we’re not trying to prove that general case.

Let’s make it possible to filter the table down to just the bad powers:

▶️ op sel x = x sel iota count x
op bad table = table[sel table[;4] != 0]

short show bad 64 64 check seq -400 400
-400 0x95fe7e07c91efafa3931b850df08e739 0xe4036416c4b21bd6 0x0 ❌
-399 0xbb7e1d89bb66b9b8c77e266516cb2107 0xe4036416c4b21bd6 0x0 ❌
-398 0xea5da4ec2a406826f95daffe5c7de949 0xe4036416c4b21bd6 0x0 ❌

-397 0x927a87139a6841185bda8dfef9ceb1ce 0xfcdbd01bdf2d3eb2 0x0 ❌
-395 0xe4df730ea142e5b60f857dde6652f5d1 0x99535e222a18bc6d 0x0 ❌

 395 0x8f2bd39f334827e8c5874cc0ec691ba0 0xa462c66df06d90e3 0x0 ❌

 397 0xdfb47aa8c020be5bb4a367ed71643b2a 0x90ae62dc5a2282dd 0x0 ❌
 398 0x8bd0cca9781476f950e620f466dea4fb 0xd0be819cb0f1092e 0x0 ❌
 399 0xaec4ffd3d61994b7a51fa93180964e39 0xa6fece16f3f40758 0x0 ❌
 400 0xda763fc8cb9ff9e58e67937de0bbe1c7 0x8598a4df299005e0 0x0 ❌

Now we have everything we need. Let’s write a function to try to prove that scale is correct for a given 𝑏 and 𝑚.

▶️ op prove (b m) =
 table = bad b m check (seq -400 -28), (seq 28 400)
 what = 'b=', (text b), ' m=', (text m), ' t=', (text 127-m), '+½'
 (count table) == 0: print '✅ proved ' what
 print '❌ disproved' what
 print short show table

This function builds a table of all the bad powers for 𝑏,𝑚. If the table is empty, it prints that the settings have been proved. If

not, it prints that the settings are unproven and prints some of the questionable powers.

Fast Unrounded Scaling: Proof by Ivy

15

If we try to prove 64, 64, we get many unproven powers.

▶️ prove 64 64
❌ disproved b=64 m=64 t=63+½

-400 0x95fe7e07c91efafa3931b850df08e739 0xe4036416c4b21bd6 0x0 ❌
-399 0xbb7e1d89bb66b9b8c77e266516cb2107 0xe4036416c4b21bd6 0x0 ❌
-398 0xea5da4ec2a406826f95daffe5c7de949 0xe4036416c4b21bd6 0x0 ❌

-397 0x927a87139a6841185bda8dfef9ceb1ce 0xfcdbd01bdf2d3eb2 0x0 ❌
-395 0xe4df730ea142e5b60f857dde6652f5d1 0x99535e222a18bc6d 0x0 ❌

 395 0x8f2bd39f334827e8c5874cc0ec691ba0 0xa462c66df06d90e3 0x0 ❌

 397 0xdfb47aa8c020be5bb4a367ed71643b2a 0x90ae62dc5a2282dd 0x0 ❌
 398 0x8bd0cca9781476f950e620f466dea4fb 0xd0be819cb0f1092e 0x0 ❌
 399 0xaec4ffd3d61994b7a51fa93180964e39 0xa6fece16f3f40758 0x0 ❌
 400 0xda763fc8cb9ff9e58e67937de0bbe1c7 0x8598a4df299005e0 0x0 ❌

Large Powers, Printing

For printing, we need to prove 𝑏 = 55,𝑚 = 66.

▶️ prove 55 66
✅ proved b=55 m=66 t=61+½

It works! In fact we can shorten the middle to 64 bits before things get iffy:

▶️ prove 55 66
prove 55 65
prove 55 64
prove 55 63
prove 55 62
✅ proved b=55 m=66 t=61+½

✅ proved b=55 m=65 t=62+½

✅ proved b=55 m=64 t=63+½

❌ disproved b=55 m=63 t=64+½

167 0xd910f7ff28069da41b2ba1518094da05 0x7b6e56a6b7fd53 0x0 ❌
❌ disproved b=55 m=62 t=65+½

167 0xd910f7ff28069da41b2ba1518094da05 0x7b6e56a6b7fd53 0x0 ❌
201 0xd106f86e69d785c7e13336d701beba53 0x68224666341b59 0x1 ❌
211 0xf356f7ebf83552fe0583f6b8c4124d44 0x69923a6ce74f07 0x0 ❌

Lemma 9. For 𝑝 ∈ [−400, −28] ∪ [28, 400], 𝑏 ≤ 55, and 𝑚 ≥ 66, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. We calculated above that 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2. By Lemma 4, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝). ∎

Large Powers, Parsing

For parsing, we want to prove 𝑏 = 64, 𝑚 = 73.

▶️ prove 64 73
✅ proved b=64 m=73 t=54+½

Fast Unrounded Scaling: Proof by Ivy

16

It also works! But we’re right on the edge. Shortening the middle by one bit breaks the proof:

▶️ prove 64 73
prove 64 72
✅ proved b=64 m=73 t=54+½

❌ disproved b=64 m=72 t=55+½

-93 0x857fcae62d8493a56f70a4400c562ddc 0xf324bb0720dbe7fe 0x1 ❌

Lemma 10. For 𝑝 ∈ [−400, −28] ∪ [28, 400], 𝑏 ≤ 64, and 𝑚 ≥ 73, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and

𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. We calculated above that 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ 2. By Lemma 4, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝). ∎

Bonus: 64-bit Input, 64-bit Output?

We don’t need full 64-bit input and 64-bit output, but if we did, there is a way to make it work at only a minor performance

cost. It turns out that for 64-bit input and 64-bit output, for any given 𝑝, considering all the inputs 𝑥 that cause 𝑚𝑖𝑑𝑑𝑙𝑒 = 0,

either all the middles overflowed or none of them did. So we can use a lookup table to decide how to interpret 𝑚𝑖𝑑𝑑𝑙𝑒 = 0.

The implementation steps would be:

1. Note that the proofs remain valid without 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

2. Don’t make use of the 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1 optimization in the uscale implementation.

3. When 𝑝 is large, force the sticky bit to 1 instead of trying to compute it from 𝑚𝑖𝑑𝑑𝑙𝑒.

4. When 𝑚𝑖𝑑𝑑𝑙𝑒 = 0 for a large 𝑝, consult a table of hint bits indexed by 𝑝 to decide whether 𝑚𝑖𝑑𝑑𝑙𝑒 has overflowed. If

so, decrement 𝑡𝑜𝑝.

Here is a proof that this works.

First, define topdiff which computes the difference between 𝑡𝑜𝑝 and 𝑡𝑜𝑝ℝ for a given 𝑏,𝑚,𝑝.

▶️ # topdiff computes top - topℝ.
op (b m p) topdiff x =
 top = (x * pm p) >> b+m
 topℝ = (floor x * (10**p) / 2**pe p) >> b+m
 top - topℝ

Fast Unrounded Scaling: Proof by Ivy

17

Next, define hint, which is like check1 in that it looks for counterexamples. When it finds counterexamples, it computes

topdiff for each one and reports whether they all match, and if so what their value is.

▶️ # (b m) hint p returns (p pm x middle fail) where pm is (pm p).
If there is a counterexample to p, x is the first one,
middle is (x*pm)'s middle bits, and fail is 1, 2, or 3:
1 if all counterexamples have top = topR
2 if all counterexamples have have top = topR+1
3 if both kinds of counterexamples exist or other counterexamples exist
If there is no counterexample, x middle fail are 0 0 0.
op (b m) hint p =
 x = modmin (2**b-1) ((2**b)-1) (pm p) (2**b+m)
 middle = ((x * pm p) mod 2**b+m) >> b
 middle >= 1: p (pm p) x middle 0
 all = modfindall (2**b-1) ((2**b)-1) (pm p) (2**b+m) 0 ((2**b)-1)
 diffs = b m p topdiff@ all
 equal = or/ diffs == 0
 carry = or/ diffs == 1
 other = ((count all) >= 100) or or/ (diffs != 0) and (diffs != 1)
 p (pm p) x middle ((1*equal)|(2*carry)|(3*other))

Finally, define hints, which is like show check. It gets the hint results for all large 𝑝 and prints a summary of how many

were in four categories: no hints needed, all hints 0, all hints 1, mixed hints.

▶️ op hints (b m) =
 table = mix b m hint@ (seq -400 -28), (seq 28 400)
 (box 'b=', (text b), ' m=', (text m)), (+/ mix table[;4] ==@ iota 4)

Now we can try 𝑏 = 64,𝑚 = 64:

▶️ hints 64 64
b=64 m=64 452 184 110 0

The output says that 452 powers don’t need hints, 184 need a hint that 𝑡𝑜𝑝ℝ = 𝑡𝑜𝑝, and 110 need a hint that 𝑡𝑜𝑝ℝ = 𝑡𝑜𝑝 − 1.

Crucially, 0 need conflicting hints, so the hinted algorithm works for 𝑏 = 64,𝑚 = 64.

Of course, that leaves 64 top bits, and since one bit is the ½ bit, this is technically only a 63-bit result. (If you only needed a

truncated 64-bit result instead of a rounded one, you could use 𝑒 − 1 and read the ½ bit as the final bit of truncated result.)

It turns out that hints are not enough to get a full 64 bits plus a ½ bit, which would leave a 63-bit middle. In that case, there

turn out to be 63 powers where 𝑚𝑖𝑑𝑑𝑙𝑒 = 0 is ambiguous:

▶️ hints 64 63
b=64 m=63 241 283 159 63

However, if you only have 63 bits of input, then you can have the full 64-bit output:

▶️ hints 63 64
b=63 m=64 601 86 59 0

Completed Proof

Fast Unrounded Scaling: Proof by Ivy

18

Theorem 1. For the cases used in the printing and parsing algorithms, namely 𝑝 ∈ [−400, 400] with (printing)

𝑏 ≤ 55,𝑚 ≥ 66 and (parsing) 𝑏 ≤ 64,𝑚 ≥ 73, Scale is correct and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. We proved these five cases:

Lemma 3. For exact results, Scale computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Lemma 7. For inexact results and 𝑝 ∈ [0, 27] and 𝑏 ≤ 64, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Lemma 8. For inexact results, 𝑝 ∈ [−27, −1], and 𝑏 ≤ 64, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Lemma 9. For 𝑝 ∈ [−400, −28] ∪ [28, 400], 𝑏 ≤ 55, and 𝑚 ≥ 66, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and

𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Lemma 10. For 𝑝 ∈ [−400, −28] ∪ [28, 400], 𝑏 ≤ 64, and 𝑚 ≥ 73, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and

𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

The result follows directly from these. ∎

A Simpler Proof

The proof we just finished is the most precise analysis we can do. It enables tricks like the hint table for 64-bit input and 64-bit

output. However, for printing and parsing, we don’t need to be quite that precise. We can reduce the four inexact cases to two

by analyzing the exact 𝑝𝑚ℝ values instead of our rounded 𝑝𝑚 values. We will show that the spacing around the exact integer

results is wide enough that all the non-exact integers can’t have middles near 0 or 2𝑚. The idea of proving a minimal spacing

around the exact integer results is due to Michel Hack, although the proof is new.

Specifically, we can use the same machinery we just built to prove that 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [2, 2𝑚+2] for inexact results with

𝑝 ∈ [−400, 400], eliminating the need for Lemmas 7 and 8 by generalizing Lemmas 9 and 10. To do that, we analyze the non-

zero results of 𝑥 ·𝑝𝑚ℝ mod 2𝑏+𝑚. (If that expression is zero, the result is exact, and we are only analyzing the inexact case.)

Let’s start by defining gcd and pmR, which returns pn pd such that 𝑝𝑚ℝ = 𝑝𝑛/𝑝𝑑.

▶️ op x gcd y =
 not x*y: x+y
 x > y: (x mod y) gcd y
 x <= y: x gcd (y mod x)

(15 gcd 40) is 5
▶️ op pmR p =

 e = pe p
 num = (10**(0 max p)) * (2**-(0 min e))
 denom = (10**-(0 min p)) * (2**(0 max e))
 num denom / num gcd denom

(pmR -5) is (2**139) (5**5)

Fast Unrounded Scaling: Proof by Ivy

19

Let’s also define a helper zlog that is like log2 |𝑥| except that zlog 0 is 0.

▶️ op zlog x =
 x == 0: 0
 2 log abs x

(zlog 4) is 2
(zlog 0) is 0

Now we can write an exact version of check1. We want to analyze 𝑥 ·𝑝𝑚ℝ mod 2𝑏+𝑚, but to use integers, instead we analyze

𝑥𝑅 = 𝑥 ·𝑝𝑛 mod 𝑝𝑑 · 2𝑏+𝑚. We find the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] with minimal 𝑥𝑅 > 0 and the 𝑦 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] with maximal

𝑦𝑅. Then we convert those to 𝑚𝑖𝑑𝑑𝑙𝑒 values by dividing by 𝑝𝑑 · 2𝑏.

▶️ op (b m) check1R p =
 pn pd = pmR p
 xmin = 2**b-1
 xmax = (2**b)-1
 M = pd * 2**b+m
 x = modminge xmin xmax pn M 1
 x < 0: p 0 0 0 0
 y = modmax xmin xmax pn M
 xmiddle ymiddle = float ((x y * pn) mod M) / pd * 2**b
 p x y xmiddle ((xmiddle < 2) or (ymiddle > M-2))

op (b m) checkR ps = mix b m check1R@ ps

show1 64 64 check1 200
show1 64 64 check1R 200
200 0xa738c6bebb12d16cb428f8ac016561dc 0xffe389b3cdb6c3d0 0x34 .

200 0xffe389b3cdb6c3d0 0x8064104249b3c03e 0x1.9c2145p+05 .

▶️ op proveR (b m) =
 table = bad b m checkR (seq -400 400)
 what = 'b=', (text b), ' m=', (text m), ' t=', text ((127-1)-m),'+½'
 (count table) == 0: print '✅ proved ' what
 print '❌ disproved' what
 print short show table

▶️ proveR 55 66
proveR 55 62
proveR 64 73
proveR 64 72
✅ proved b=55 m=66 t=60 + ½

❌ disproved b=55 m=62 t=64 + ½

167 0x7b6e56a6b7fd53 0x463bc17af3f48e 0x1.817b1cp-02 ❌

201 0x68224666341b59 0x588220995c452a 0x1.8e0a91p-02 ❌
211 0x69923a6ce74f07 0x597216983bdc1a 0x1.14fbd3p-03 ❌
221 0x404a552daaaeea 0x50ad765f4fd461 0x1.de3812p+00 ❌
✅ proved b=64 m=73 t=53 + ½

❌ disproved b=64 m=72 t=54 + ½

-93 0xf324bb0720dbe7fe 0xc743006eaf2d0e4f 0x1.3a8eb6p+00 ❌

Fast Unrounded Scaling: Proof by Ivy

20

The failures that proveR finds mostly correspond to the failures that prove found, except that proveR is slightly more

conservative: the reported failure for 𝑝 = 221 is a false positive.

▶️ prove 55 66
prove 55 62
prove 64 73
prove 64 72
✅ proved b=55 m=66 t=61+½

❌ disproved b=55 m=62 t=65+½

167 0xd910f7ff28069da41b2ba1518094da05 0x7b6e56a6b7fd53 0x0 ❌
201 0xd106f86e69d785c7e13336d701beba53 0x68224666341b59 0x1 ❌

211 0xf356f7ebf83552fe0583f6b8c4124d44 0x69923a6ce74f07 0x0 ❌
✅ proved b=64 m=73 t=54+½

❌ disproved b=64 m=72 t=55+½

-93 0x857fcae62d8493a56f70a4400c562ddc 0xf324bb0720dbe7fe 0x1 ❌

Lemma 11. For 𝑝 ∈ [−400, 400], 𝑏 ≤ 55, and 𝑚 ≥ 66, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. Our Ivy code proveR 55 66 confirmed that 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [2, 2𝑚 − 2]. By Lemma 5 and Lemma 6, Scale(𝑥, 𝑒,𝑝)

computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1. ∎

Lemma 12. For 𝑝 ∈ [−400, 400], 𝑏 ≤ 64, and 𝑚 ≥ 73, Scale(𝑥, 𝑒,𝑝) computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. Our Ivy code proveR 64 73 confirmed that 𝑚𝑖𝑑𝑑𝑙𝑒ℝ ∈ [2, 2𝑚 − 2]. By Lemma 5 and Lemma 6, Scale(𝑥, 𝑒,𝑝)

computes uscale(𝑥, 𝑒,𝑝) and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1. ∎

Theorem 2. For the cases used in the printing and parsing algorithms, namely 𝑝 ∈ [−400, 400] with (printing)

𝑏 ≤ 55,𝑚 ≥ 66 and (parsing) 𝑏 ≤ 64,𝑚 ≥ 73, Scale is correct and 𝑚𝑖𝑑𝑑𝑙𝑒 ≠ 1.

Proof. Follows from Lemma 3, Lemma 11, and Lemma 12. ∎

Related Work

Parts of this proof have been put together in different ways for other purposes before, most notably to prove that exact

truncated scaling can be implemented using 128-bit mantissas in floating-point parsing and printing algorithms. This section

traces the history of the ideas as best I have been able to determine it. In these summaries, I am using the terminology and

notation of this post—such as top, middle, bottom, 𝑥𝑅 and 𝑝𝑚ℝ—for consistency and ease of understanding. Those terms and

notations do not appear in the actual related work.

This section is concerned with the proof methods in these papers and only touches on the actual algorithms to the extent that

they are relevant to what was proved. The main post’s related work discusses the algorithms in more detail.

Paxson 1991

→ Vern Paxson, “A Program for Testing IEEE Decimal-Binary Conversion”, class paper 1991.

The earliest work that I have found that linked modular minimization to floating-point conversions is Paxson’s 1991 paper,

already mentioned above and written for one of William Kahan’s graduate classes. Paxson credits Tim Peters for the modular

minimization algorithms, citing an email discussion on validgh!numeric-interest@uunet.uu.net in April 1991:

In the following section we derive a modular equation which if minimized produces especially difficult

conversion inputs; those that lie as close as possible to exactly half way between two representable outputs. We

file:///Users/rsc/src/rsc.io/blog/_static/fp#related
https://www.icir.org/vern/papers/testbase-report.pdf

Fast Unrounded Scaling: Proof by Ivy

21

then develop the theoretical framework for demonstrating the correctness of two algorithms developed by Tim

Peters for solving such a modular minimization problem in O(log(N)) time.

I have been unable to find copies of the numeric-interest email discussion.

Peters broke down the minimization problem into a two step process, which I followed in this proof. Using this post’s notation

(𝑥𝑅 = 𝑥 · 𝑐 mod 𝑚), the two steps in Paxson’s paper (with two algorithms each) are:

FirstModBelow: Find the first 𝑥 ≥ 0 with 𝑥𝑅 ≤ hi.

FirstModAbove: Find the first 𝑥 ≥ 0 with 𝑥𝑅 ≥ 𝑙𝑜.

ModMin: Find the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] that maximizes 𝑥𝑅 ≤ hi.

ModMax: Find the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] that minimizes 𝑥𝑅 ≥ 𝑙𝑜.

(The names ModMin and ModMax seem inverted from their definitions, but perhaps “Min” refers to finding something below

a limit and “Max” to finding something above a limit. They are certainly inverted from this post’s usage.)

In contrast, this post’s algorithms are;

modfirst: Find the first 𝑥 ≥ 0 with 𝑥𝑅 ∈ [𝑙𝑜, hi].

modfind: Find the first 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] with 𝑥𝑅 ∈ [𝑙𝑜, hi].

modmin: Find the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] that minimizes 𝑥𝑅.

modminge: Find the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] that minimizes 𝑥𝑅 ≥ 𝑙𝑜.

modmax: Find the 𝑥 ∈ [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] that maximizes 𝑥𝑅.

It is possible to use modfirst to implement Paxson’s FirstModBelow and FirstModAbove, and vice versa, so they are

equivalent in power.

In Paxson’s paper, the implementation and correctness of FirstModBelow and FirstModAbove depend on computing the

convergents of continued fractions of 𝑐/𝑚 and proving properties about them. Specifically, the result of FirstModBelow must

be the denominator of a convergent or semiconvergent in the continued fraction for 𝑐/𝑚, so it suffices to find the last even

convergent 𝑝2𝑖/𝑞2𝑖 such that (𝑞2𝑖)𝑅 > hi but (𝑞2(𝑖+ 1))𝑅 < hi, and then compute the correct 𝑞2𝑖 + 𝑘 · 𝑞2𝑖+ 1 by looking at how

much (𝑞2𝑖+ 1)𝑅 subtracts from (𝑞2𝑖)𝑅 and subtracting it just enough times. I had resigned myself to implementing this

approach before I found David Wärn’s simpler proof of the direct GCD-like approach in modfirst. The intermediate steps in

GCD(𝑝, 𝑞) are exactly the continued fraction representation of 𝑝/𝑞, so it is not surprising that both GCDs and continued

fractions can be used for modular search.

No matter how modfirst is implemented, the critical insight is Peters’s observaton that “find the first” is a good building

block for the more sophisticated searches.

Paxson’s ModMin/ModMax are tailored to a slightly different problem than we are solving. Instead of analyzing a particular

multiplicative constant (a specific 𝑝𝑚 or 𝑝𝑚ℝ value), Paxson is looking directly for decimal numbers as close as possible to

midpoints between binary floating-point numbers and vice versa. That means finding 𝑥𝑅 near 𝑚/2 modulo 𝑚. This post’s

proof is concerned with those values as well, but also the ones near integers. So we look for 𝑥𝑅 near zero modulo 2𝑚, which is

a little simpler. Paxson couldn’t use that because it would find numbers near zero modulo 𝑚 in addition to numbers near 𝑚/2

modulo 𝑚. The former are especially easy to round, so Paxson needs to exclude them. (In contrast, numbers near zero

modulo 𝑚 are a problem for Scale because the caller might want to take their floor or ceiling.)

Hanson 1997

→ Kenton Hanson, “Economical Correctly Rounded Binary Decimal Conversions”, published online 1997.

https://web.archive.org/web/20000607192440/http://www.dnai.com/~khanson/ECRBDC.html

Fast Unrounded Scaling: Proof by Ivy

22

The next analysis of floating-point rounding difficulty that I found is a paper published on the web by Kenton Hanson in

1997, reporting work done earlier at Apple Computer using a Macintosh Quadra, which perhaps dates it to the early 1990s.

Hanson’s web site is down and email to the address on the paper bounces. The link above is to a copy on the Internet Archive,

but it omits the figures, which seem crucial to fully understanding the paper.

Hanson identified patterns that can be exploited to grow short “hard” conversions into longer ones. Then he used those

longest hard conversions as the basis for an argument that conversion works correctly for all conversions up to that length:

“Once this worst case is determined we have shown how we can guarantee correct conversions using arithmetic that is slightly

more than double the precision of the target destinations.”

Hanson focused on 113-bit floating-point numbers, using 256-bit mantissas for scaling, and only rounding conversions. I

expect that his approach would have worked for proving that 53-bit floating-point numbers can be converted with 128-bit

mantissas, but I have not reconstructed it and confirmed that.

Hack 2004

→ Gordon Slishman, “Fast and Perfectly Rounding Decimal/Hexadecimal Conversions”, IBM Research Report, April 1990.

→ P.H. Abbott et al., “Architecture and software support in IBM S/390 Parallel Enterprise Servers for IEEE Floating-Point

arithmetic”, IBM Journal of Research and Development, September 1999.

→ Michel Hack, “On Intermediate Precision Required for Correctly-Rounding Decimal-to-Binary Floating-Point Conversion”,

IBM Technical Paper, 2004.

The next similar discovery appears to be Hack’s 2004 work at IBM.

In 1990, Slishman had published a conversion method that used floating-point approximations, like in this post. Slishman

used a 16-bit middle and recognized that a non-0xFFFF 𝑚𝑖𝑑𝑑𝑙𝑒 implied the correctness of the top section. His algorithm fell

back to a slow bignum implementation when 𝑚𝑖𝑑𝑑𝑙𝑒 was 0xFFFF and carry error could not be ruled out (approximately 1/216

of the time). (Hack defined 𝑝𝑚 to be a floor instead of a ceiling, so the error condition is inverted from ours.)

In 1999, Abbott et al. (including Hack) published a comprehensive article about the S/390’s new support for IEEE floating-

point (as opposed to its IBM hexadecimal floating point). In that article, they observed (like Paxson) that difficult numbers

can be generated by using continued fraction expansion of 𝑝𝑚ℝ values. They also observed that bounding the size of the

continued fraction expansion would bound the precision required, potentially leading to bignum-free conversions.

Following publication of that article, Alan Stern initiated “a spirited e-mail exchange during the spring of 2000” and “pointed

out that the hints at improvement mentioned in that article were still too conservative.” As a result of that exchange, Hack

launched a renewed investigation of the error behavior, leading to the 2004 technical report.

Hack’s report only addresses decimal-to-binary (parsing) with a fixed-length input, not binary-to-decimal (printing), even

though the comments in the 1999 article were about both directions and the techniques would apply equally well to binary-to-

decimal.

In the terminology of this post, Hack proved that analysis of the continued fraction for a specific 𝑝𝑚ℝ can establish a lower

bound 𝐿 such that 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ < 𝐿 if and only if 𝑚𝑖𝑑𝑑𝑙𝑒ℝ || 𝑏𝑜𝑡𝑡𝑜𝑚ℝ = 0. For an 𝑛-digit decimal input,

𝐿 = 1/(10𝑛 · (𝑘 + 2)) where 𝑘 is the maximum partial quotient in the continued fraction expansion of 𝑝𝑚ℝ following certain

convergents.

Hack summarizes:

Using Continued Fraction expansions of a set of ratios of powers of two and five we can derive tight bounds on

the intermediate precision required to perform correctly-rounding floating-point conversion: it is the sum of

https://en.wikipedia.org/wiki/Macintosh_Quadra
https://mp7.watson.ibm.com/f55d084fadf9ae59852574ab0058f749.html
https://ieeexplore.ieee.org/document/5389154
https://ieeexplore.ieee.org/document/5389154
https://dominoweb.draco.res.ibm.com/reports/rc23203.pdf
https://en.wikipedia.org/wiki/IBM_hexadecimal_floating-point

Fast Unrounded Scaling: Proof by Ivy

23

three components: the number of bits in the target format, the number of bits in the source format, and the

number of bits in the largest partial quotient that follows a partial convergent of the “right” size among those

Continued Fraction expansions. (This is in addition to the small number of bits needed to cover computational

loss, e.g. when multiple truncating or rounding multiplications are performed.)

When both source and target precision are fixed, the set of ratios to be expanded grows linearly with the target

exponent range, and is small enough to permit a simple exhaustive search, in the case of the IEEE 754 standard

formats: the extra number of bits (3rd component of the sum mentioned above) is 11 for 19-digit Double

Precision and 13 for 36-digit Extended Precision.

I admit to discomfort with both Paxson’s and Hack’s use of continued fraction analysis. The math is subtle, and it seems easy

to overlook a relevant case. For example Paxson needs semiconvergents for FirstModBelow but Hack does not explicitly

mention them. Even though I trust that both Paxson’s and Hack’s results are correct, I do not trust myself to adapt them to

new contexts without making unjustified mathematical assumptions. In contrast, the explicit GCD-like algorithm in

modfirst and explicit searches based on it seem far less sophisticated and less error-prone to adapt.

Giulietti 2018

→ Raffaello Giulietti, “The Schubfach way to render doubles,” published online, 2018, revised 2021.

→ Dmitry Nadhezin, nadezhin/verify-todec GitHub repository, published online, 2018.

Raffaello Giulietti developed the Schubfach algorithm while working on Java bug JDK-4511638, that Double.toString

sometimes returned non-shortest results, most notably ‘9.999999999999999e22’ for 1e23. Giulietti’s original solution

contained a fallback to multiprecision arithmetic in certain cases, and he wrote a paper proving the solution’s correctness (I

have been unable to find that original code, nor the first version of the paper, which was apparently titled “Rendering doubles

in Java”.)

Dmitry Nadhezin set out to formally check the proof using the ACL2 theorem prover. During that effort, Giulietti and

Nadhezin came across Hack’s 2004 paper and realized they could remove the multiprecision arithmetic entirely. Nadhezin

adapted Hack’s analysis and proved Giulietti’s entire conversion algorithm correct using the ACL2 theorem prover. As part of

that proof, Nadhezin proved (and formally verified) that the spacing around exact integer results that might arise during

Schubfach’s printing algorithm is at least 𝜀 = 2−64 in either direction allowing the use of 126-bit 𝑝𝑚 values. (Using 126 instead

of 128 is necessary because Java has only a signed 64-bit integer type.)

Adams 2018

→ Ulf Adams, “Ryū: Fast Float-to-String Conversion”, ACM PLDI 2018.

Independent of Giulietti’s work, Ulf Adams developed a different floating-point printing algorithm named Ryū, also based on

128-bit (or in Java, 126-bit) 𝑝𝑚 values. Adams proved the correctness of a computation for ⌊𝑥/10𝑝⌋ using ⌊𝑝𝑚ℝ⌋ for positive 𝑝

and ⌈𝑝𝑚ℝ⌉ for negative 𝑝. Doubling 𝑥 provides the ½ bit, but Ryū does not compute the sticky bit as part of that computation.

Instead, Ryū computes an exactness bit (the inverse of the sticky bit) by explicitly testing 𝑥 mod 2𝑝 = 0 for 𝑝 > 0 and

𝑥 mod 5−𝑝 = 0 for 𝑝 < 0. The latter is done iteratively, requring up to 23 64-bit divisions in the worst case. (It is possible to

reduce this to a single 64-bit multiplication by a constant obtained from table lookup, but Ryū does not.)

Like any of these proofs, Adams’s proof of correctness of the truncated result needs to analyze specific 𝑝𝑚 or 𝑝𝑚ℝ values.

Adams chose to analyze the 𝑝𝑚 values and defined a function minmax_euclid(𝑎, 𝑏,𝑀) that returns the minimum and

maximum values of 𝑥 ·𝑎 mod 𝑏 for 𝑥 ∈ [0,𝑀′] for some 𝑀′ ≥ 𝑀 chosen by the algorithm. The paper includes a dense page-

long proof of the correctness of minmax_euclid, but it must contain a mistake, since minmax_euclid turns out not to be

https://drive.google.com/file/d/1IEeATSVnEE6TkrHlCYNY2GjaraBjOT4f/edit
https://github.com/nadezhin/verify-todec
https://bugs.openjdk.org/browse/JDK-4511638
https://github.com/nadezhin/verify-todec/blob/master/README.md
https://dl.acm.org/doi/10.1145/3192366.3192369
https://go.googlesource.com/go/+/refs/tags/go1.26rc1/src/internal/strconv/math.go#93

Fast Unrounded Scaling: Proof by Ivy

24

correct. As one example, Junekey Jeon has pointed out that minmax_euclid(3, 8, 7) returns a minimum of 1 and maximum

of 0. We can verify this by implementing minmax_euclid in Ivy:

▶️ op minmax_euclid (a b M) =
 s t u v = 1 0 0 1
 :while 1
 :while b >= a
 b u v = b u v - a s t
 (-u) >= M: :ret a b
 :end
 b == 0: :ret 1 (b-1)
 :while a >= b
 a s t = a s t - b u v
 s >= M: :ret a b
 :end
 a == 0: :ret 1 (b-1)
 :end

minmax_euclid 3 8 7
1 0

Jeon also points out that the trouble begins on the first line of Adams’s proof, which claims that 𝑎 ≤ (−𝑎) mod 𝑏, but that is

false for 𝑎 > 𝑏/2. However, the general idea is right, and Adams’s Ryū repository contains a more complex and apparently

fixed version of the max calculation. Even corrected, the results are loose in two directions: they include 𝑥 both smaller and

larger than the exact range [2𝑏−1, 2𝑏 − 1).

Jeon 2020

→ Junekey Jeon, “Grisu-Exact: A Fast and Exact Floating-Point Printing Algorithm”, published online, 2020.

https://github.com/ulfjack/ryu/blob/6a02945a5abd/src/main/java/info/adams/ryu/analysis/EuclidMinMax.java#L83
https://github.com/ulfjack/ryu/blob/6a02945a5abd/src/main/java/info/adams/ryu/analysis/EuclidMinMax.java#L83
https://fmt.dev/papers/Grisu-Exact.pdf

Fast Unrounded Scaling: Proof by Ivy

25

In 2020, Jeon published a paper about Grisu-Exact, an exact variation of the Grisu algorithm without the need for a bignum

fallback algorithm. Jeon relied on Adams’s general proof approach but pointed out the problems with minmax_euclid

mentioned in the previous section and supplied a replacement algorithm and proof of its correctness.

▶️ op minmax_euclid (a b M) =
 modulo = b
 s u = 1 0
 :while 1
 q = (ceil b/a) - 1
 b1 = b - q*a
 u1 = u + q*s
 :if M < u1
 k = floor (M-u) / s
 :ret a ((modulo - b) + k*a)
 :end
 p = (ceil a/b1) - 1
 a1 = a - p*b1
 s1 = s + p*u1
 :if M < s1
 k = floor (M-s) / u1
 :ret (a-k*b1) (modulo - b1)
 :end
 :if (b1 == b) and (a1 == a)
 :if M < s1 + u1
 :ret a1 (modulo - b1)
 :else
 :ret 0 (modulo - b1)
 :end
 :end
 a b s u = a1 b1 s1 u1
 :end

minmax_euclid 3 8 7
1 7

Lemire 2023

→ Daniel Lemire, “Number Parsing at a Gigabyte per Second”, Software—Pratice and Experience, 2021.

→ Noble Mushtak and Daniel Lemire, “Fast Number Parsing Without Fallback”, Software—Pratice and Experience, 2023.

In March 2020, Lemire published code for a fast floating-point parser for up to 19-digit decimal inputs using a 128-bit 𝑝𝑚,

based on an idea by Michael Eisel. Nigel Tao blogged about it in 2020 and Lemire published the algorithm in Software—

Practice and Experience in 2021.

As published in 2021, Lemire’s algorithm uses 𝑝𝑚 = ⌊𝑝𝑚ℝ⌋ and therefore checks for 𝑚𝑖𝑑𝑑𝑙𝑒 = 2𝑚− 1 as a sign of possible

inexactness. Upon finding that condition, the algorithm falls back to a bignum-based implementation.

In 2023, Mushtak and Lemire published a short but dense followup note proving that 𝑚𝑖𝑑𝑑𝑙𝑒 = 2𝑚− 1 is impossible, and

therefore the fallback check is unnecessary and can be removed. They address only the specific case of a 64-bit input and 73-

bit middle, making the usual continued fraction arguments to bound the error for non-exact results.

Empirically, Mushtak and Lemire’s computational proof does not generalize to other sizes. I downloaded their Python script

and changed it from analyzing 𝑁 = 𝑚 + 𝑏 = 137 to analyze other sizes and observed both false positives and false negatives. I

https://arxiv.org/abs/2101.11408
https://arxiv.org/pdf/2212.06644
https://nigeltao.github.io/blog/2020/eisel-lemire.html
https://github.com/fastfloat/fast_float/blob/main/script/mushtak_lemire.py

Fast Unrounded Scaling: Proof by Ivy

26

believe the false negatives are from omitting semiconvergents (unnecessary for 𝑁 = 137, as proved in their Theorem 2) and

the false positives are from the approach not limiting 𝑥 to the range [2𝑏−1, 2𝑏 − 1).

Jeon 2024

→ Junekey Jeon, “Dragonbox: A New Floating-Point Binary-to-Decimal Conversion Algorithm”, published online, 2024.

In 2024, Jeon published Dragonbox, a successor to Grisu-Exact. Jeon changed from using the corrected minmax_euclid

implementation to using a proof based on continued fractions. Algorithm C.14 (“Finding best rational approximations from

below and above”) is essentially equivalent to Paxson’s algorithms. Like in Ryū and Grisu-Exact, the proof only considers the

truncated computation ⌊𝑥 · 2𝑒 · 10𝑝⌋ and computes an exactness bit separately.

Conclusion

This post proved that Scale can be implemented correctly using a fast approximation that involves only a few word-sized

multiplications and shifts. For printing and parsing of float64 values, computing the top 128 bits of a 64×128-bit

multiplication is sufficient.

The fact that float64 conversions require only 128-bit precision has been known since at least Hanson’s work at Apple in the

mid-1990s, but that work was not widely known and did not include a proof. Paxson used an exact computational worst case

analysis of modular multiplications to find difficult conversion cases; he did not bound the precision needed for parsing and

printing. In contrast, Hack, Giulietti and Nadhezin, Adams, Mushtak and Lemire, and Jeon all derived ways to bound the

precision needed for parsing or printing, but none of them used an exact computational worst case analysis that generalizes to

arbitrary floating-point formats, and none recognized the commonality between parsing and printing.

The approach in this post, based on Paxson’s general approach and built upon a modular analysis primitive by David Wärn, is

the first exact analysis that generalizes to arbitrary formats and handles both parsing and printing.

In this post, I have tried to give credit where credit is due and to represent others’ work fairly and accurately. I would be

extremely grateful to receive additions, corrections, or suggestions at rsc@swtch.com.

https://raw.githubusercontent.com/jk-jeon/dragonbox/master/other_files/Dragonbox.pdf
mailto:rsc@swtch.com

