Lock-Free Bugs

Russ Cox
January 4, 2017

research.swich.com/lockfred

[I wrote this post in mid-2014 for debuggers.co, which seems to have gone at least
partly defunct, so I am reproducing it here. That site collected answers from pro-
grammers to the prompt “What's the most interesting bug you've encountered?”

To me, the most interesting bugs are the ones that reveal fundamental, subtle
misunderstandings about the way a program works. A good bug is like a good
science experiment: through it, you learn something unexpected about the vir-
tual world you are exploring.

About ten years ago I was working on a networked server that used threads,
coordinating with locks and condition variables. This server was part of Plan
9 and was written in C. Occasionally it would crash inside malloc, which usu-
ally means some kind of memory corruption due to a write-after-free error.
One day, while benchmarking with the bulk of the server disabled, I was lucky
enough to have the crash happen reproducibly. The server being mostly disabled
gave me a head start in isolating the bug, and the reproducibility made it pos-
sible to cut code out, piece by piece, until one section was very clearly implicat-
ed.

The code in question was cleaning up after a client that had recently discon-
nected. In the server, there is a per-client data structure shared by two threads:
the thread R reads from the client connection, and the thread W writes to it. R
notices the disconnect as an EOF from a read, notifies W, waits for an acknowl-
edgement from W, and then frees the per-client structure.

To acknowledge the disconnect, W ran code like:

glock (&conn->1k);
conn->writer_done = 1;
gsignal(&conn->writer_ack);
qunlock(&conn->1k);
thread_exit();

And to wait for the acknowledgement, R ran code like:

glock(&conn->1k);
while(!conn->writer_done)
gwait(&conn->writer_ack);

// The writer is done, and so are we:
// free the connection.
free(conn);

This is a standard locks and condition variables piece of code: qwait is defined
to release the lock (here, conn->1k), wait, and then reacquire the lock before re-
turning. Once R observes that writer_done is set, R knows that W is gone, so
R can free the per-connection data structure.

R does not call qunlock (&conn->1k). My reasoning was that calling qunlock
before free sends mixed messages: qunlock suggests coordination with another
thread using conn, but free is only safe if no other thread is using conn. W was
the other thread, and W is gone. But somehow, when I added qunlock(&conn-
>1k) before free(conn), the crashes stopped. Why?

To answer that, we have to look at how locks are implemented.

Conceptually, the core of a lock is a variable with two markings unlocked and
locked. To acquire a lock, a thread checks that the core is marked unlocked and,


https://research.swtch.com/lockfree

Lock-Freg Buas

if so, marks it locked, in one atomic operation. Because the operation is atomic,
if two (or more) threads are attempting to acquire the lock, only one can suc-
ceed. That thread—let’s call it thread A—now holds the lock. Another thread vy-
ing for the lock—thread B—sees the core is marked locked and must now de-
cide what to do.

The first, simplest approach, is to try again, and again, and again. Eventual-
ly thread A will release the lock (by marking the core unlocked), at which point
thread B’s atomic operation will succeed. This approach is called spinning, and
a lock using this approach is called a spin lock.

A simple spin lock implementation looks like:

struct SpinlLock

{
int bit;
b
void
spinlock(SpinLock =*1k)
{
for(;;) {
if(atomic_cmp_and_set(&lk->bit, @, 1))
return;
3
3
void
spinunlock(SpinLock =*1k)
{
atomic_set(&lk->bit, 0);
3

The spin locK’s core is the bit field. It is 0 or 1 to indicate unlocked or locked.
The atomic_cmp_and_set and atomic_set use special machine instructions to
manipulate 1k->bit atomically.

Spinning only makes sense if the lock is never held for very long, so that B’s
spin loop only executes a small number of times. If the lock can be held for
longer periods of time, spinning while it is held wastes CPU and can interact
badly with the operating system scheduler.

The second, more general approach is to maintain a queue of threads inter-
ested in acquiring the lock. In this approach, when thread B finds the lock al-
ready held, it adds itself to the queue and uses an operating system primitive
to go to sleep. When thread A eventually releases the lock, it checks the queue,
finds B, and uses an operating system primitive to wake B. This approach is
called queueing, and a lock using this approach is called a queue lock. Queue-
ing is more efficient than spinning when the lock may be held for a long time.

The queue locK’s queue needs its own lock, almost always a spin lock. In the
library I was using, qlock and qunlock were implemented as:

struct QLock

{
SpinLock spin;
Thread *owner;
ThreadQueue queue;

};

void


http://en.wikipedia.org/wiki/Spinlock

Lock-Freg Buas

glock(QLock =*1k)
{
spinlock(&lk->spin);
if(lk->owner == nil) {
lk->owner = current_thread();
spinunlock (&lk->spin);
return;
}
push (&lk->queue, current_thread());
spinunlock (&lk->spin);
os_sleep();

3

void
gunlock(QLock *1k)

{
Thread *t;

spinlock(&lk->spin);
t = pop(&lk->queue);
lk->owner = t;
if(t !'= nil)
os_wakeup(t);
spinunlock (&lk->spin);
}

The queue locK’s core is the owner field. If owner is nil, the lock is unlocked;
otherwise owner records the thread that holds the lock. The operations on 1k-
>owner are made atomic by holding the spin lock 1k->spin.

Back to the bug.

The locks in the crashing code were queue locks. The acknowledgement pro-
tocol between R and W sets up a race between W’s call to qunlock and R’s call
to gqlock (either the explicit call in the code or the implicit call inside qwait).
Which call happens first?

If W’s qunlock happens first, then R’s qlock finds the lock unlocked, locks it,
and everything proceeds uneventfully.

If Rs glock happens first, it finds the lock held by W, so it adds R to the queue
and puts R to sleep. Then W’s qunlock executes. It sets the owner to R, wakes up
R, and unlocks the spin lock. By the time W unlocks the spin lock, R may have
already started running, and R may have already called free(conn). The spi-
nunlock’s atomic_set writes a zero to conn->1k.spin.bit. That’s the write-
after-free, and if the memory allocator didn't want a zero there, the zero may
cause a crash (or a memory leak, or some other behavior).

But is the server code wrong or is qunlock wrong?

The fundamental misunderstanding here is in the definition of the queue lock
APL Is a queue lock required to be unlocked before being freed? Or is a queue
lock required to support being freed while locked? I had written the queue lock
routines as part of a cross-platform library mimicking Plan 9%, and this ques-
tion had not occurred to me when I was writing qunlock.

One one hand, if the queue lock must be freed only when unlocked, then
qunlock’s implementation is correct and the server must change. If R calls qun-
lock before free, then Rs qunlock’s spinlock must wait for W’s qunlock’s
spinunlock, so that W will really be gone by the time R calls free.

On the other hand, if the queue lock can be freed while locked, then the serv-
er is correct and qunlock must change: the os_wakeup gives up control of 1k



Lock-Freg Buas

and must be delayed until after the spinunlock.

The Plan 9 documentation for queue locks does not address the question di-
rectly, but the implementation was such that freeing locked queue locks was
harmless, and since I was using my library to run unmodified Plan 9 soft-
ware, I changed the lock implementation to call os_wakeup after spinunlock.
Two years later, while fixing a different bug, I defensively changed the server
implementation to call qunlock too, just in case. The definition of the POSIX
pthread_mutex_destroy function gives a different answer to the same design
question: “It is safe to destroy an initialised mutex that is unlocked. Attempting
to destroy a locked mutex results in undefined behaviour”

What did we learn?

The rationale I gave for not calling qunlock before free made an implicit as-
sumption that the two were independent. After looking inside an implementa-
tion, we can see why the two are intertwined and why an API might specify, as
POSIX does, that you must unlock a lock before destroying it. This is an exam-
ple of implementation concerns influencing an API, creating a “leaky abstrac-
tion.”

What makes this bug interesting is that it was caused by a complex interac-
tion between manual memory management and iconcurrency. Obviously a pro-
gram must stop using a resource before freeing it. But a concurrent program
must stop all threads from using a resource before freeing it. On a good day, that
can require bookkeeping or careful coordination to track which threads are still
using the resource. On a bad day, that can require reading the lock implemen-
tation to understand the exact order of operations carried out in the different
threads.

In the modern computing world of clients and servers and clouds, concurren-
cy is a fundamental concern for most programs. In that world, choosing garbage
collection instead of manual memory management eliminates a source of leaky
abstractions and makes programs simpler and easier to reason about.

I started the post by saying that good bugs help you learn something unex-
pected about the virtual world you are exploring. This was especially true for
Maurice Wilkes and his team, who built EDSAG, the first practical stored-pro-
gram computer. The first program they ran on EDSAC (printing square num-
bers) ran correctly, but the second did not: the log for May 7, 1949 reads “Table
of primes attempted - programme incorrect” That was a Saturday, making this
the first weekend spent working on a buggy program.

What did they learn? Wilkes later recalled,

“By June 1949, people had begun to realize that it was not so easy to
get a program right as had at one time appeared. ... It was on one of my
journeys between the EDSAC room and the punching equipment that
the realization came over me with full force that a good part of the re-
mainder of my life was going to be spent in finding errors in my own
programs.” (Wilkes, p. 145)

For more about this early history, see Brian Hayes’s “The Discovery of Debug-
ging” and Martin Campbell-Kelly’s “The Airy Tape: An Early Chapter in the His-
tory of Debugging”



https://github.com/9fans/plan9port/commit/80b8842f3e4d562e67455de1c1de80cba5532aec
https://github.com/9fans/plan9port/commit/4f6d2bb1e8e38aaeeeabb159272da19718bfb05d
http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_init.html
http://en.wikipedia.org/wiki/Leaky_abstraction
http://blog.golang.org/concurrency-is-not-parallelism
http://en.wikipedia.org/wiki/Electronic_Delay_Storage_Automatic_Calculator
http://www.cl.cam.ac.uk/relics/elog.html
http://books.google.com/books?id=9Uc4AQAAIAAJ
http://bit-player.org/wp-content/extras/bph-publications/Sciences-1993-07-Hayes-EDSAC.pdf
http://dx.doi.org/10.1109/85.194051

