
Go Proposal Process: Scaling Discussions
Go Proposals, Part 4

Russ Cox
August 22, 2019

research.swtch.com/proposals-discuss

[I’ve been thinking a lot recently about the Go proposal process, which is the way
we propose, discuss, and decide changes to Go itself. Like nearly everything about
Go, the proposal process is an experiment, so it makes sense to reflect on what
we’ve learned and try to improve it. This post is the fourth in a series of posts about
what works well and, more importantly, what we might want to change.]

The current proposal process refers to “discussion on the issue tracker” and,
in the case of a design doc, a “final discussion,” but we’ve never written more
about how to make those discussions effective. A discussion of a small is typi-
cally a dozen messages or fewer; those are easy. Discussion of large changes is
more difficult and does not always work well.

Scaling One Discussion

As a forum for active discussion of large changes, the GitHub issue tracker has
serious flaws. As I write this, the “try” issue takes seven seconds to load, and
when it does it reports that there are 798 comments but only displays the first
29, then a marker for “773 hidden items,” and then the last 25. Hiding most of
the discussion makes it impossible to search the page, which leads to people
making points that have already been said. (For comparison, my outdated, man-
ually curated summary page loads and displays 611 comments in 300ms. The
problem is not the size of the raw data.) Using a discussion forum that displayed
the entire discussion would be a step in the right direction. After that, it would
likely help to display a threaded tree of messages, both to make clear what a re-
ply is replying to and also to allow skipping over subthreads that are uninterest-
ing for one reason or another. After that, it would likely help to add comment
ranking that affects display order, to help surface the most important comments.
One idea raised was to use /r/golang or a new subreddit for the large proposal
discussions, and that seems worth considering further.

At the contributor summit, we asked that each discussion have someone serve
in the role of “facilitator.” The facilitator tries to point out possible misunder-
standings as they happen, makes sure that a few people don’t dominate the con-
versation, and tries to bring quiet people into the conversation. One point raised
was whether it would make sense for the online proposal discussion to have a
clear facilitator whose job is to keep a summary or decision document up-to-
date as well as to keep the discussion on topic and non-repeating as much as
possible. (In the first few days of a particularly active discussion, this might ap-
proach a full-time job.)

While better software and better process would help manage a large discus-
sion, though, there is a point of diminishing returns, and we shouldn’t focus on
this one discussion to the exclusion of what precedes it. It is possible that in-
stead of trying to scale one discussion we should scale by having many discus-
sions.



proposals
https://research.swtch.com/proposals-discuss
https://golang.org/s/proposal
https://blog.golang.org/experiment
https://research.swtch.com/proposals
https://golang.org/s/proposal
proposals-large
https://swtch.com/try.html
https://golang.reddit.com


G P P: S D

Scaling with Many Discussions

As I mentioned in the large changes post, one problem with “try” was simply
that it should have been a second design draft, not a proposal. Making it a pro-
posal with a timeline made everyone feel like they had to rush to comment be-
fore a decision was made. In the more relaxed setting of evaluating a design
draft, the more distributed “post a thoughtful experience report somewhere and
link it to the wiki” scales much better and seems to be working well.

Requiring large changes to start with a series of design drafts creates space
for a variety of different conversations about the designs, in different forums and
media. Any important points discovered in those conversations can be reported
back to the proposal issue and influence future drafts, without having to put ev-
ery comment on the proposal issue. These various discussions would also help
impacted users get up to speed on the details of the proposal, again without hav-
ing every comment on the issue itself.

Overall, having many discussions would in turn reduce the criticality of the
issue tracker discussion itself and therefore the demands the discussion places
on the discussion forum, whether that’s GitHub, Reddit, or something else. (As
one data point, the Go modules issue received only 242 comments, compared to
the current 798 for “try”, quite possibly because there had already been so much
community discussion in other forums before the issue was filed.)

Scaling with Offline Discussions

Another fascinating idea raised at the contributor summit is to make use of the
Go Meetup network in the discussions of the most important, largest changes,
such as generics. The idea would be to prepare materials to help meetup orga-
nizers (or others) lead and facilitate discussions at each local meetup. Then, cru-
cially, we could gather summaries of feedback from each meetup and possibly
even iterate this process. What I like most about this idea is that it engages a
portion of the user community (at least potentially) different from “people who
have the time and energy to keep up with GitHub,” by taking the discussion to
them. (I plan to write a future post about representation more broadly.)

Scaling with Decision Documents

Another way to reduce the load placed on the GitHub issue discussion would be
to shift the focus to writing a “decision document” laying out the various points
raised and presenting as fairly as possible both sides of the decision to be made.
Then the discussion would serve primarily to suggest additions or changes to
the decision document. This would have the important effect that someone who
looked away for a week or two could catch up not by reading every message that
arrived in the interim but instead by looking at what had changed in the much
shorter document. We already do this informally for very large issues by trying
to post summary comments occasionally; formalizing this in a separate docu-
ment might help encourage people to start at the document instead of the dis-
cussion. The decision document could also be a new section in the proposal de-
sign document, but perhaps a separate document would be easier to point at. I
filed issue 33791 to track this idea.

Summary

Overall, it seems clear we can do better at scaling and managing a single large
discussion, but I think it is equally clear that process adjustments such as having
many discussions or producing a decision document could make the final dis-
cussion easier and shorter, which would be a complementary, and possibly larg-



proposals-large#process
https://golang.org/s/go2design
https://golang.org/issue/24301
https://golang.org/issue/33791


G P P: S D

er, win. If I had to choose one aspect of discussions to focus on, I think I would
focus on addressing the underlying social problem by taking steps to turn down
the importance and heat of the final discussion, such as creating space for mul-
tiple discussions and introducing a decision document as a way to focus the en-
ergy of the discussion, instead of falling into the engineer’s fallacy of “let’s build
a better discussion forum.”

Next

Again, this is the fourth post in a series of posts thinking and brainstorming
about the Go proposal process. Everything about these posts is very rough. The
point of posting this series—thinking out loud instead of thinking quietly—is so
that anyone who is interested can join the thinking.

I encourage feedback, whether in the form of comments on these posts, com-
ments on the newly filed issues, mail to rsc@golang.org, or your own blog posts
(please leave links in the comments). Thanks for taking the time to read these
and think with me.

The next post will be about how the process for proposing large changes
could be made smoother with some kind of official mechanism for experiments
and prototypes.



proposals
mailto:rsc@golang.org

