
Thinking about the Go Proposal Process
Go Proposals, Part 1

Russ Cox
August 5, 2019

research.swtch.com/proposals-intro

I’ve been thinking a lot recently about the Go proposal process, which is the
way we propose, discuss, and decide changes to Go itself. Like nearly everything
about Go, the proposal process is an experiment, so it makes sense to reflect on
what we’ve learned and try to improve it. This post is the first in a series of posts
about what works well and, more importantly, what we might want to change.

This post is focused on where we are now and how we got here. Later posts
will focus on specific areas where we might improve. At our annual contribu-
tor summit held at Gophercon last week, about thirty or so contributors from
outside Google attended and helped us on the Go team think through many
of these areas. Their suggestions figure prominently in the posts to follow, as, I
hope, will yours.

(If you are curious what the contributor summit is, here’s Sam Whited’s re-
cap of our first such summit in 2017. This year’s was pretty similar in spirit, al-
though with different discussion topics. This year there were about 60 people in
the room, roughly evenly split between members of the Go team at Google and
contributors from outside Google.)

Proposal Process

When we started Go, we launched with instructions on day one detailing how to
send us code changes, which are of course the core of any open source project.
Around five years ago we noticed that despite the many code contributions,
most change proposals were made by the Go team at Google, even when moti-
vated and driven by feedback from the broader Go user community. One rea-
son, we realized, was that the process for proposing changes was nearly com-
pletely undocumented. To try to address this, we introduced a formal change
proposal process in 2015, now documented at golang.org/s/proposal. For more
background, see Andrew Gerrand’s 2015 GopherCon talk, starting at 27m17s
(only a few minutes). In that talk, Andrew said, “It’s important to note that this
process is an experiment. We’re still kind of discussing exactly how that process
should work.”

I talked at GopherCon this year about the experiment, simplify, ship cycle we
use for just about everything. Like with other parts of Go, we’ve learned from
our experiments using the proposal process and made adjustments in the past,
and of course we intend to keep doing that.

The current proposal process is documented as four steps:

1. The author creates a brief issue clearly describing the proposal. (No
need for a design document just yet.)

2. Discussion on the GitHub issue aims to triage the proposal into one
of three buckets: accept; decline; or ask for a detailed design doc ad-
dressing an identified list of concerns.

3. If the previous step ended at accept/decline, we’re done. Otherwise, the
author writes a design doc, which is discussed on the GitHub issue.

4. Once comments and design doc revisions wind down, a final discus-
sion aims to reach a final accept or decline decision.

See the full document for details.

proposals
https://research.swtch.com/proposals-intro
https://golang.org/s/proposal
https://blog.golang.org/experiment
https://research.swtch.com/proposals
https://blog.golang.org/contributors-summit
https://golang.org/s/proposal
https://youtu.be/0ht89TxZZnk?t=1637
https://blog.golang.org/experiment
https://golang.org/s/proposal

T G P P

A Random Sample

As I write this, there are 1633 GitHub issues labeled Proposal. Of the 1187 that
have been closed, 170 were accepted, about 14%.

To get a sense of the submissions, discussions, and outcomes, here are twen-
ty selected at random (by a Perl script).

– #11502 A security response policy for Go (39 comments, accepted)

– #14991 add a builtin splice function for easier slice handling (7 com-
ments)

– #16844 freeze net/rpc (20 comments, accepted)

– #17672 remote runtime (9 comments)

– #18303 flag.failf should return an error with Cause() error (15 com-
ments)

– #18662 Struct field tags for directional Marshal/Unmarshal (6 com-
ments)

– #21360 add a build tag “test” (14 comments)

– #21592 add an in-memory writer/seeker to io package (9 comments)

– #22247 Add sync.Map.Len() method (5 comments)

– #22918 go/doc: consts/vars should be grouped with types by their
computed type (31 comments)

– #23331 encoding/json: export the offset method of the Decoder (7
comments)

– #23789 add uuid generator to stdlib (13 comments)

– #24410 Add some way to explore packages and structs inside. (6 com-
ments)

– #25273 add token to syntax to reduce error boilerplate (2 comments)

– #25518 x/vgo: allow aliases in go.mod (10 comments)

– #25670 don’t include cgo with net on Unix by default (7 comments)

– #26803 mime/multipart: add (*Reader).NextRawPart to avoid quoted-
printable decoding (9 comments, accepted)

– #26822 flag: clean up error message (20 comments, accepted)

– #30886 cmd/go: allow replacing a subdirectory within a package (4
comments)

– #31041 package and file organisation (7 comments)

One is significant. Most are small. A few are not well-defined. Most had fewer
than ten comments. This is typical.

Process Evolution

For many people, the proposal process represents not those small changes and
suggestions in the random sample but instead larger proposed changes, like type
aliases (2016), monotonic time (2017), Go modules (2018), new number literals
(2019), and the abandoned “try” proposal (2019).

These large changes are of course important, and in each of these we’ve
learned a bit more about what works and what doesn’t for making successful
changes.

https://golang.org/issue/11502
https://golang.org/issue/14991
https://golang.org/issue/16844
https://golang.org/issue/17672
https://golang.org/issue/18303
https://golang.org/issue/18662
https://golang.org/issue/21360
https://golang.org/issue/21592
https://golang.org/issue/22247
https://golang.org/issue/22918
https://golang.org/issue/23331
https://golang.org/issue/23789
https://golang.org/issue/24410
https://golang.org/issue/25273
https://golang.org/issue/25518
https://golang.org/issue/25670
https://golang.org/issue/26803
https://golang.org/issue/26822
https://golang.org/issue/30886
https://golang.org/issue/31041

T G P P

The discussion of the original aliases proposal helped us understand the im-
portance of motivating changes, like my codebase refactoring talk and arti-
cle motivated type aliases. During that experience, someone introduced me to
Rust’s “no new rationale” rule, which we have tried to follow when making dif-
ficult decisions since then. I reflected more about motivation for changes, using
both aliases and monotonic time as examples, in my GopherCon 2017 talk kick-
ing off Go 2.

Although there were parts of the Go modules proposal that did not go well,
the general approach of spending significant time discussing the ideas before
starting the formal proposal process did seem to help: at the time that we ac-
cepted the modules proposal, the GitHub conversation and reactions were over-
whelmingly in favor.

One thing we learned from aliases and then from modules was the impor-
tance of having an implementation people can try and also the importance of
having the changes ready to be committed at the start of a development cycle.
We adopted this idea explicitly for Go 2 language changes, and it was success-
ful for the smaller Go 1.13 changes like the new number literal syntax.

For the recent “try” proposal, we followed the evolving process, including
making changes available for people to use early in a cycle, and the discussion
and reactions were much more heated than we expected. We abandoned the
proposal only a week before the summit, and one thing was eager to discuss
with contributors was what had been different about “try” and how to contin-
ue to improve the process to make future changes smoother. (If the discussion
about “try” was difficult, what will happen when we discuss generics?)

Improvement Areas

The discussions we had over six hours or so at the contributor summit surfaced
at least six different areas where we might improve the proposal process specifi-
cally and the Go project’s community engagement more generally. I plan to write
a post about each of these themes, but I’ll summarize them briefly here too. I’d
be happy to hear suggestions for any other important areas that I’ve missed.

Clarity & Transparency. Adding clarity and transparency about how we
make changes to Go—making that process easier to follow and to participate
in—was the original motivation for creating the proposal process. There’s more
we could do, including publishing a record of proposal decisions. (Most of the
proposal review group’s time is spent not on decisions but on adding people to
issues, pinging requests for more information, and so on.) Update: See the “Clar-
ity & Transparency” post for more thoughts.

Scaling the Process. The proposal process is meant to lightweight enough to
apply to very small changes, such as the recently accepted proposal to add a
SubexpIndex method to regexp.Regexp. As the proposed change gets bigger,
it may make sense to introduce additional process. For example, we were careful
at Gophercon 2018 to publish our thoughts about error handling and generics
as “design drafts” not proposals. For a large enough change, perhaps publishing
iterating on design drafts should formally be the first step of the process. Up-
date: See the “Sizing Changes” post for more thoughts.

Scaling Discussions. GitHub’s issue tracker is not particularly effective at
large discussions. For large changes, we may want to investigate alternatives, and
we certainly want to make sure to have more discussion long before it is time to
make any decisions. For example, publishing multiple design drafts, giving talks,
and publishing articles are all ways to engage helpful discussion before reaching
the point in the proposal process where decisions are being made.

Prototypes & Experiments. For most non-trivial changes it is helpful to un-
derstand them by trying them out before making a decision. We do this as a

https://talks.golang.org/2016/refactor.article
http://aturon.github.io/tech/2018/05/25/listening-part-1/
https://blog.golang.org/toward-go2
https://github.com/golang/go/issues/24301
https://blog.golang.org/go2-here-we-come
https://tip.golang.org/doc/go1.13#language
https://golang.org/issue/32437
https://blog.golang.org/why-generics
proposals-clarity
https://golang.org/issue/32420
proposals-size

T G P P

matter of course for small changes: we always have at least a few months be-
tween when a change is made and the corresponding release, during which we
can reconsider, adjust, or remove it. We arrange to land language changes on day
1 of a development cycle to maximize that window. But for large changes we
probably need a way to make prototypes available separately, to give even more
time, a bit like the vgo prototype for Go modules.

Community Representation. Andrew said in 2015 that he hoped the pro-
posal process would “make the process more accessible to anybody who really
wants to get involved in the design of Go.” We definitely get many more pro-
posals from outside the Go team now than we did in 2015, so in that sense it
has succeeded. On the other hand, we believe there are over a million Go pro-
grammers, but only 2300 different GitHub accounts have commented on pro-
posal issues, or a quarter of one percent of users. If this were a random sample
of our users, that might be fine, but we know the participation is skewed to En-
glish-speaking GitHub users who can take the time to keep up with the Go issue
tracker. To make the best possible decisions we need to gather input from more
sources, from a broader cross-section of the population of the Go community,
by which I mean all Go users. (On a related note, anyone who describes “the
Go community” as having a clear opinion about anything must have in mind a
much narrower definition of that group: a million or more people can’t be paint-
ed with a single brush.)

Community Coordination. We have had mixed results attempting to engage
the broader Go community in the work of developing Go. The clearest success
is the technical development of the Go source code itself. Today, I count exact-
ly 2,000 email addresses in the Go CONTRIBUTORS file, and only 310 from
google.com or golang.org. The next biggest success is probably the proposal pro-
cess itself: I estimate that the Go team accounts for about 15% of proposals over-
all and about 30% of accepted proposals. We also created a few working groups,
most notably the package management committee in 2016 and the developer ex-
perience and community outreach working groups in 2017. Each one had as-
pects that worked well and aspects that didn’t. More recently, the golang-tools
group started in 2018 is coming up on its first birthday and seems to be oper-
ating well. We should try to learn from the successful and unsuccessful aspects
of all these groups and try to create new, successful, sustainable groups.

Next

I plan to post about a new theme every day or two, starting with the ones in the
previous section, until I run out of interesting thoughts.

Please remember as you read these posts that the goal here is thinking, brain-
storming, looking for good ideas. There are almost certainly bad ideas in these
posts too. Don’t assume that everything I mention will happen, especially not in
the exact form described. Everything about these posts is very rough. The point
of posting this series—thinking out loud instead of thinking quietly—is so that
anyone who is interested can join the thinking.

I encourage feedback, whether in the form of comments on the posts, mail
to rsc@golang.org, or your own blog posts (please leave links in the comments).
Thanks for taking the time to read these and think with me.

https://blog.golang.org/go2-here-we-come
https://research.swtch.com/gophercount
https://groups.google.com/d/msg/go-package-management/P8TehVoFLjg/Ni6VRyOjEAAJ
https://blog.golang.org/developer-experience
https://blog.golang.org/community-outreach-working-group
https://golang.org/wiki/golang-tools
mailto:rsc@golang.org

