
The Design of Transparent Telemetry
Transparent Telemetry, Part 2

Russ Cox
February 8, 2023

research.swtch.com/telemetry-design

I believe open-source software projects need to find an open-source-friendly
way to do telemetry. This post is part of a short series of posts describing trans-
parent telemetry, one possible answer to that challenge. For more about the ra-
tionale and background, see the previous post*. For additional use cases, see the
next post*.

Transparent telemetry is made up of five parts:

– Counting: Go toolchain programs store counter values in per-week
files maintained locally.

– Configuration: There is a reviewed public process for defining a new
graph or metric to track and publish on the Go web site. The exact
counters that need to be collected, along with the sampling rate need-
ed for high accuracy results, are derived from this configuration.

– Reporting: Once a week, an automated reporting program randomly
decides whether to fetch the current configuration and then whether
to be one of the sampled systems that week. If so, it reports the coun-
ters listed in the configuration to a server run by the Go team at
Google. In typical usage, we expect a particular Go installation to re-
port each week with under 2% probability, meaning less than once per
year on average. [Update, 2023-02-24: The design has been changed to
be opt-in*, which raises the expected reporting probabilities.]

– Publishing: The server publishes each day’s reports in full (in a com-
pressed form) as well as publishing the tabular and graphical sum-
maries defined in the configuration.

– Opt-out: The system is enabled by default, but opting out is as
straightforward, simple, and complete as possible. [Update, 2023-02-
24: The design has been changed to be opt-in*.]

This post details each of these parts in turn. I wrote an implementation of lo-
cal counter collection to convince myself it could be made cheap enough, but as
of the publication of this post, no other part of the system exists today in any
form. I hope that the system can be built for Go over the course of 2023, and
I hope that other open-source projects will be interested to adopt this approach
or inspired to explore others.

Counting

Go toolchain programs (go and the other programs that ship in the Go distribu-
tion, like go tool compile and go tool vet, along with other Go team-main-
tained programs like gopls and govulncheck) collect counter values in local
files using a simple API:

package counter

func New(name string) *Counter

func (c *Counter) Inc()

func NewStack(name string, frames int) *Stack



telemetry
https://research.swtch.com/telemetry-design
telemetry-intro
telemetry-uses
telemetry-feedback#opt-in
telemetry-feedback#opt-in


T D  T T

func (s *Stack) Inc()

Basic named counters are created with counter.New, typically assigned to a
global variable (this has no init-time overhead), and then incremented as the
program runs by using the Inc method.

For example, suppose we want to monitor the typical build cache miss rate
for a go build command. Each go command invocation can track the miss rate
during its run and then increment one bucket of a histogram with exponen-
tially-spaced buckets: 0%, <0.1%, <0.2%, <0.5%, <1%, <2%, <5%, <10%, <20%,
<50%, and <100%. After a week, those 11 counters record the distribution of
build cache miss rate experienced on that system.

Stack counters are similar, but the constructor also takes the maximum num-
ber of frames to record. Each frame is represented by an import path, func-
tion name, and line number relative to the start of the function, such as
cmd/compile/internal/base.Errorf+10. The counter name is the concate-
nation of the the name passed to the constructor and the given number of
frames. For example, the counter name for one increment of the result of New-
Stack("missing-std-import", 5) might be

missing-std-import

cmd/compile/internal/types2.(*Checker).importPackage+39

cmd/compile/internal/types2.(*Checker).collectObjects+54

cmd/compile/internal/types2.(*Checker).checkFiles+18

cmd/compile/internal/types2.(*Checker).Files+0

cmd/compile/internal/types2.(*Config).Check+2

A line number relative to the start of the function is fairly stable across unrelat-
ed edits in the source code, making it possible to identify the same stack trace
even across different versions of a program.

One of the key properties of transparent telemetry is that uploaded reports
only contain strings that are already known to the collection server. Using an
import path instead of the full file path allows aggregation across different sys-
tems and more importantly avoids exposing details like the full path to a direc-
tory where the Go compiler source code was stored when it was built. Another
important consideration is that function names in modified copies of Go tools
might contain unexpected strings: we don’t want to know about a modified copy
that adds types2.checkWithChatGPT to the call stack. This problem is handled
by only saving stack traces from specific unmodified, released versions of tools.
The version information and the presence of any modifications can be identified
using the build information embedded in the binary*. (In contrast, .NET reports
full file system paths and then documents that it is the developer’s responsibil-
ity to “avoid inadvertent disclosure of information*” by not building the soft-
ware in “directories whose path names expose personal or sensitive information”.
The burden of not exposing private data in a telemetry system should never be
placed on users.)

The counter files are stored in the directory <user>/go/telemetry/local/,
where <user> is the user configuration directory, as reported by
os.UserConfigDir*. Each file is named by the program’s name, version, build
toolchain version, GOOS, and GOARCH, along with the date of the start of the
week. For example:

/Users/rsc/Library/Application Support/go/telemetry/local/

compile-go1.21.1-darwin-arm64-2023-01-04.v1.count

gopls@v0.11.0-go1.21.1-linux-386-2023-01-04.v1.count

...

The version and build toolchain version are recorded only as devel for unver-



https://pkg.go.dev/runtime/debug#ReadBuildInfo
https://learn.microsoft.com/en-us/dotnet/core/tools/telemetry#avoid-inadvertent-disclosure-of-information
https://pkg.go.dev/os/#UserConfigDir


T D  T T

sioned tools, such as when developing Go itself.
Aggregating counters by week has two important purposes. First, it should

help reduce privacy concerns by making clear that there is no way to recon-
struct any kind of fine-grained trace of user behavior. Second, reporting coun-
ters by week reduces statistical noise caused by persistent usage variations such
as weekends. Every long-term monitoring dashboard I have ever seen begins
by computing 7- or 28-day averages of the data to remove this high-frequency
noise. Removing it client-side gives both more privacy and cleaner reports.

When Go telemetry first creates the local directory, it randomly selects the
start of that system’s week. The system in our example has chosen weeks begin-
ning on Wednesday. The random choice of week start spreads the server load
over the week and also provides prompt reporting of new problems: if a new Go
distribution is published on Tuesday, one seventh of the systems that install it
immediately will include Tuesday’s operation in the Wednesday uploads.

These files use a custom binary format that starts with a simple key-value
header repeating the information that went into the file name:

Week: 2023-01-04

Program: compile

GoVersion: go1.21.1

GOOS: darwin

GOARCH: arm64

After the header come the counters, in an on-disk hash table suitable for mem-
ory mapping into each running instance of the program. Those instances use
lock-free atomic operations to increment counters and maintain the file, keep-
ing the overhead associated with telemetry very low. The design also avoids
any possibility of deadlock or unbounded latency when a counter is increment-
ed, even if one instance of the program is hung or otherwise misbehaving. A
tool, perhaps called go tool telemetry, will convert one of these binary files to
JSON for processing by other interested programs.

Note that the raw data stored on disk is only names of counters and their as-
sociated 64-bit totals. There is no event log or any more detailed kind of trace.
The decision to maintain the counters directly, instead of deriving them from a
more detailed trace, is motivated mainly by concerns about disk space and up-
date latency. However, never having any kind of event log or trace also reduces
the privacy impact of the local collection.

A local web server (perhaps go tool telemetry -http) will display the lo-
cal counters and be able to graph counter data over time for user inspection (at
only 1-week granularity, of course).

Configuration

Data collection in transparent telemetry starts with the reason the data is being
collected: a specific graph that is going to be computed, along with the specif-
ic margin of error desired for that graph. From that graphing configuration, the
transparent telemetry server can compute the reporting configuration, declaring
which counters to report at what sampling rate in order to produce that graph.

For example, a graphing configuration for the Go build cache miss rate graph
we considered in the previous section might look like:

title: Go build cache miss rate

type: histogram

error: 1%

counter: go/buildcache/miss:{0,0.1,0.2,0.5,1,2,5,10,20,50,100}

For a margin of error of 1% at a 99% confidence level, we need about 16,000





T D  T T

samples*. The server would keep track of an estimate of the number of report-
ing systems and adjust the sampling rate each week to produce the right number
of samples. If there are one million reporting systems, then the sampling rate to
get 16,000 samples is 1.6%, so the corresponding reporting configuration would
sample each counter with that probability.

Changing what is collected can have privacy implications, so we have to en-
sure changes are properly reviewed. As an example of a privacy mistake, sup-
pose a developer mistakenly decided it was important to understand which stan-
dard library packages are most imported and created a histogram of import
paths using counter.New("import:"+path).Inc(). I don’t think that would
be a useful histogram anyway, but the privacy mistake is that the histogram
would include private user import paths as well as standard library paths. How-
ever, the impact of the mistake would be limited to local collection, because
the graphing and reporting configurations would not mention counters like im-

port:my.company/private/package, so they would never be reported.
Developers of the Go toolchain will probably want to add counters to the

toolchain purely for local use, to understand whether they would be helpful to
report. That decision should not be overburdened with process, because the
stakes are relatively low. Probably our standard code review process suffices,
paired with clear documentation about what kinds of counters are and are not
appropriate to introduce.

Changes to the server’s graphing configuration merit more attention, since as
we saw it is the graphing configuration that determines which counters are re-
ported. It probably makes sense to require such changes to go through a review
by a small group charged with ownership and maintenance of the configuration,
either on the issue tracker or on the Gerrit server.

Finally, note the lack of any kind of wildcards in the graphing configura-
tion. It is impossible to ask for all the counters beginning with import:, which
means import:my.company/private/package will never be reported, because
the graphing configuration will never list that counter explicitly by name. (Any
attempt to do so would be caught by the public configuration review process.)

Reporting

When a counter file’s week is over, toolchain programs (even long-running
ones) automatically start writing counters to the next week’s file. Remember that
“week” refers to a 7-day period that starts on a weekday chosen randomly for
each Go installation: on some machines weeks are Sunday to Saturday, others
use Tuesday to Monday, and so on. At some point after the week ends, a report-
ing program (probably the go command, perhaps also gopls) will notice the
completed week of counters and begin the reporting process.

The reporting program uses a reporting configuration to find out which
counters should be reported. It would be served as a Go module (perhaps
telemetry.go.dev/config). Visiting that same page in a browser would print
a nice HTML page listing all the counters that have ever been collected, annotat-
ing each with the date ranges when it was collected and the justification for col-
lection. In the event that some counter is deemed no longer necessary or some-
how problematic to collect, it can be removed from the configuration, and pro-
grams will immediately stop reporting it. Similarly, if the system must be shut
down for some reason, serving an empty configuration would stop all reporting.



sample


T D  T T

The reporting configuration would be JSON corresponding to the Go type
ReportConfig defined as:

type ReportConfig struct {

GOOS []string

GOARCH []string

GoVersion []string

Programs []ProgramConfig

}

type ProgramConfig struct {

Name string

Versions []string

Counters []CounterConfig

Stacks []CounterConfig

}

type CounterConfig struct {

Name string

Rate float64

}

The ReportConfig lists the known GOOS, GOARCH, and Go versions that can
be reported. This ensures that programs testing with an experimental, as-yet-
unknown operating system, architecture, or Go version are not accidentally col-
lected. Similarly, the ProgramConfig lists the programs that should be collected
from and their specific versions, if they are separate from the main Go toolchain
(like gopls and govulncheck). The CounterConfig lists the specific counters
being collected and their individual sample rates.

The reporter starts by picking a random floating point number X between 0
and 1. If X ≥ 0.1, then the reporter stops without even downloading the configu-
ration. For example, if the reporter picks X = 0.2, it stops immediately. This step
imposes a hard limit of 10% sampling rate for any counter or stack, and it ar-
ranges that a particular Go installation won’t even download the collection con-
figuration more than once every couple of months on average.

Assuming X < 0.1, the reporter downloads and reads the collection configu-
ration. It then reads all the per-program counter files and filters them to include
only the ones with matching GOOS, GOARCH, Go version, program name, and
program version. It further filters the selected reports to drop any counters for
which the configured rate is less than X. For example, if the reporter picks X =
0.05, it will report counters configured with rate 0.1 but not counters configured
with rate 0.01. If a particular program has no sampled counters, that program
is dropped from the report. If the report has no programs, no report is sent at
all.

In a large deployment such as Go’s, a typical reporting rate will be under 0.02
(2%), with the effect that each system will average around one weekly report per
year, or fewer. One nice property of transparent telemetry is that as more and
more systems run with it enabled, each system reports less and less data.

[Update, 2023-02-24: The hard limit of 10% and the expected reporting rate
of 2% were based on opt-out telemetry with millions of installations. The design
has changed to be opt-in*, which will raise those probabilities.]



telemetry-feedback#opt-in


T D  T T

When there is a report to send, the reporting program prepares JSON corre-
sponding to the Go type Report defined as:

type Report struct {

Config string

Week string

LastWeek string

X float64

Programs []Program

}

type ProgramReport struct {

Program string

Version string

GoVersion string

GOOS string

GOARCH string

Counters []Counter

Stacks []Counter

}

type Counter struct {

Name string

Count int64

Stack []string

}

The Report’s Config field lists the configuration version used for generating the
report, so analysis can determine the sampling rates applied.

On a system that uses Go only intermittently, a reporting program might not
run for a few days or more after the week ends. The Report’s Week field iden-
tifies the week this report covers, by giving its first day in yyyy-mm-dd format.
If it has been more than seven days since the last use of Go, the now-weeks-old
local report will not be uploaded. This lets the server “close the books” on a giv-
en week’s telemetry after seven days.

In any data collection system it is important to quantify how much data is be-
ing discarded. (This is why, for example, pprof attributes missed profile events
to synthesized functions like _LostExternalCode.) In transparent telemetry, if
a system is used one week but then not used at all the next week, the system will
have no opportunity to (randomly decide to) report the first week’s data. The
number of systems being used so intermittently is probably low enough not to
worry about having a statistically significant effect on the results, but it would
be good to measure that rather than guess. The LastWeek field reports the week
prior to the one being reported when the reporting system last gathered any
counters at all. On a frequently used system, LastWeek will always be seven days
earlier than Week. After a long pause in Go usage, LastWeek will be two or more
weeks earlier than Week, indicating that this system never even considered re-
porting counters from LastWeek. If a substantial number of reports have a mu-
tiweek gap, we can conclude that the earlier week’s data may be less accurate
than previously estimated. Again, this is generally unlikely, but perhaps it would
happen after vacations such as end-of-year holidays. It would be good to have
an explicit signal that those numbers are not as trustworthy rather than puzzle
through why they look different. The LastWeek field also makes it possible to
estimate the number of active users over longer time periods, such as 4 weeks
or 52 weeks, which may be useful for understanding overall usage.

Note that the different programs’ counter sets are all uploaded together, so





T D  T T

that for example if the go command is taking a surprisingly long time to run a
build, the associated counters from the compile and link program are in the
same record. Note also that there is no persistent identifier in the records that
would allow linking one week’s upload with a different week’s upload.

The server would necessarily observe the source IP address in the TCP ses-
sion uploading the report, but the server would not record that address with the
data, a fact that can be confirmed by inspecting the reporting server source code
(the server would be open source like the rest of Go) or by reference to a stated
privacy policy like the one for the Go module mirror*, depending on whether
you lean more toward trusting software engineers or lawyers. A company could
also run their own HTTP proxy to shield individual system’s IP addresses and
arrange for employee systems to set GOTELEMETRY to the address of that proxy.
It may also make sense to allow Go module proxies to proxy uploads, so that
the existing GOPROXY setting also works for redirecting the upload and shielding
the system’s IP address.

Recall from above that the local, binary counter files are stored in <us-

er>/go/telemetry/local/. When a report is uploaded, the exact JSON that
was uploaded is written to <user>/go/telemetry/uploaded/, named for the
day of the upload (2006-01-02.json). The aim of both these directories (in-
cluding their naming) is to make the system’s overall operation as transparent
as possible. The expectation is that a typical report will be under 1,000 coun-
ters, requiring about 50 kB in JSON format. Assuming twice as many counters
are counted locally than are uploaded, that’s 2,000 counters in binary format,
which is another 100 kB. The storage cost of keeping the local forms indefinitely
is then under 100 kB/week or 5 MB/year. An upload once or twice a year adds
only another 100 kB/year. A command like go clean -telemetry would delete
all of these.

The privacy feature of waiting at least a week before uploading anything at
all (to give people plenty of time to opt out before any data is sent) means that
ephemeral machines such as build containers will never be counted. The trade-
off of better privacy seems worth the loss of visiblity into these machines.

Publishing

Every day, the upload server takes the previous 24 hours’ worth of uploads and
updates the published graphs defined in the graph configuration.

It also publishes the full, raw JSON for the previous 24 hours worth of up-
loads, in seven distinct data sets corresponding to the seven different possible
weeks (starting Sunday, Monday, Tuesday, ...) that could have been reported that
day. For example, the files published on 2023-01-18 would be:

week-2023-01-04-uploaded-2023-01-17.v1.reports

week-2023-01-05-uploaded-2023-01-17.v1.reports

week-2023-01-06-uploaded-2023-01-17.v1.reports

week-2023-01-07-uploaded-2023-01-17.v1.reports

week-2023-01-08-uploaded-2023-01-17.v1.reports

week-2023-01-09-uploaded-2023-01-17.v1.reports

week-2023-01-10-uploaded-2023-01-17.v1.reports

Thanks to sampling, the collected uploads will be fairly small and will not grow
even as the number of active installations does. Estimating 50 kB per uploaded
report and a target of about 16,000 reports per week, each week’s reports total
only 800 MB (split across the seven different starting days in that week). Com-
pression with Brotli should reduce the footprint by at least a factor of 10, mak-
ing each week at most 80 MB, or at most 4 GB for an entire year’s worth of up-
loads.



https://proxy.golang.org/privacy


T D  T T

Opt-Out

[Update, 2023-02-24: The design has been changed to be opt-in*. This section is
unmodified from the original for historical purposes.]

An explicit goal of this design is to build a system that is reasonable to have
enabled by default, for two reasons. First, the vast majority of users do not
change any default settings. In systems that have collection off by default, opt-
in rates tend to be very low, skewing the results toward power users who un-
derstand the system well. Second, the existence of an opt-in checkbox is in my
opinion too often used as justification for collecting far more data than is neces-
sary. Aiming for an opt-out system with as few reasons as possible to opt out led
to this minimal design instead. Also, because the design collects a fixed number
of samples, more systems being opted in means collecting less from any given
system, reducing the privacy impact to each individual system.

Enabling the system by default requires proper notice to users who are in-
stalling the system. As we did with the on-by-default module proxy and check-
sum database, notices would be posted in the release notes for the first Go dis-
tribution that enables telemetry as well as displayed next to the download links
on go.dev* and go.dev/dl*.

Some users will want to opt out on general principle, no matter how minimal
the system is, and that should be as easy as possible, something like:

go env -w GOTELEMETRY=off

Like all go env -w commands, this would configure a per-user setting that ap-
plies to all installed Go toolchains, present and future: a new Go toolchain in-
stalled tomorrow would respect the setting too.

In addition, some Linux distributions may want to prompt users during in-
stallation or disable telemetry unconditionally. We should make that easy to do
too. Proposal #57179* introduced a go.env file in the root of the Go toolchain
that configures per-toolchain settings. This will ship in Go 1.21. Linux distri-
butions that want to disable telemetry could include a go.env file containing
GOTELEMETRY=off.

Another dark pattern in opt-out systems is reporting information before the
user has a chance to opt out. For example, I was once told about a popular de-
veloper tool that showed a telemetry checkbox, pre-checked, during the installa-
tion process, giving users the opportunity to uncheck the box. But at this point,
a few screens into the installation, telemetry had already been sent, allowing the
company behind the tool to track installation counts and opt-out rate by the fact
that telemetry suddenly stopped, as well as tracking details like the IP and MAC
addresses of systems that have opted out. In that system, to avoid sending any
telemetry at all, you had to set an environment variable and then invoke the in-
staller from the command line. I can’t find concrete evidence anywhere for this
story, so I am not sure if the system in question still behaves this way or ever
did. Either way, I strongly disagree with this kind of trick as violating the entire
spirit of an opt-out decision.

Transparent telemetry waits at least a week after installation before sending
any report or even fetching the collection configuration. This should give plen-
ty of time to run go env -w to opt out.



telemetry-feedback#opt-in
https://go.dev/
https://go.dev/dl/
https://go.dev/issue/57179


T D  T T

Summary

Repeating the summary from the introductory post*, transparent telemetry has
the following key properties:

– The decisions about what metrics to collect are made in an open, pub-
lic process.

– The collection configuration is automatically generated from the ac-
tively tracked metrics: no data is collected that isn’t needed for the
metrics.

– The collection configuration is served using a tamper-evident trans-
parent log, making it very difficult to serve different collection config-
urations to different systems.

– The collection configuration is a cacheable, proxied Go module, so
any privacy-enhancing local Go proxy already in use for ordinary
modules will automatically be used for collection configuration. To
further ameliorate concerns about tracking systems by the down-
loading of the collection configuration, each installation only both-
ers downloading the configuration each week with probability 10%, so
that each installation only asks for the configuration about five times
per year. [Update, 2023-02-24: The design has changed to be opt-in*,
which requires raising these probabilities.]

– Uploaded reports only include total event counts over a full week, not
any kind of time-ordered event trace.

– Uploaded reports do not include user IDs, machine IDs, or any other
kind of ID.

– Uploaded reports only contain strings that are already known to the
collection server: counter names, program names, and version strings
repeated from the collection configuration, along with the names of
functions in specific, unmodified Go toolchain programs for stack
traces. The only types of non-string data in the reports are event
counts, dates, and line numbers.

– IP addresses exposed by the HTTP session that uploads the report are
not recorded with the reports.

– Thanks to sampling*, only a constant number of uploaded reports are
needed to achieve a specific accuracy target, no matter how many in-
stallations exist. Specifically, only about 16,000 reports are needed for
1% accuracy at a 99% confidence level. This means that as new systems
are added to the system, each system reports less often. With a conser-
vative estimate of two million Go installations, about 16,000 reporting
each week corresponds to an overall reporting rate of well under 2%
per week, meaning each installation would upload a report on average
less than once per year. [Update, 2023-02-24: The design has changed
to be opt-in*, which requires raising these probabilities.]

– The aggregate computed metrics are made public in graphical and
tabular form.

– The full raw data as collected is made public, so that project maintain-
ers have no proprietary advantage or insights in their role as the di-
rect data collector.



telemetry-intro
telemetry-feedback#opt-in
sample
telemetry-feedback#opt-in


T D  T T

– The system is on by default, but opting out is easy, effective, and per-
sistent. [Update, 2023-02-24: The design has been changed to be opt-
in*.]

Next Steps

For more background about telemetry and why it is important, see the introduc-
tory post*. For more use cases, see the next post*.

Although these posts use Go as the example system using transparent teleme-
try, I hope that the ideas apply and can be adopted by other open-source
projects too, in their own, separate collection systems.

I am posting these to start a discussion about how the Go toolchain can adopt
telemetry* in some form to help the Go toolchain developers make better deci-
sions about the development and maintenance of Go. I have written an imple-
mentation of local counter collection to convince myself it could be made cheap
enough, but no other part of the system exists today in any form. I hope that
the system can be built over the course of 2023.

* Asterisks mark hyperlinked text.



telemetry-feedback#opt-in
telemetry-intro
telemetry-uses
https://go.dev/s/telemetry-discussion

