
Transparent Telemetry for Open-Source Projects
Transparent Telemetry, Part 1

Russ Cox
February 8, 2023

research.swtch.com/telemetry-intro

How do software developers understand which parts of their software are be-
ing used and whether they are performing as expected? The modern answer is
telemetry, which means software sending data to answer those questions back to
a collection server. This post is about why I believe telemetry is important for
open-source projects, and what it might look like to approach telemetry in an
open-source-friendly way. That leads to a new design I call transparent teleme-
try. If you are impatient, skip to the summary at the end*. Other posts in the
series detail the design* and present various uses*.

Why Telemetry?

Without telemetry, developers rely on bug reports and surveys to find out when
their software isn’t working or how it is being used. Both of these techniques are
too limited in their effectiveness. Let’s look at each in turn.

Bug reports are not enough. Users only file bug reports when they think
something is broken. If a function is not behaving as documented, that’s a clear
bug to report. But if a program is misbehaving in a way that doesn’t affect cor-
rectness, users are much less likely to notice. Statistics gathered by transpar-
ent telemetry make it possible for developers to notice that something is going
wrong even when users do not.

For example, during the Go 1.14 release process in early 2020 we made a
change to the way macOS Go distributions are built, as part of keeping them
acceptable to Apple’s signing tools. Unfortunately, the way we made the change
also made all the pre-compiled .a files shipped in the distribution appear stale
to builds. The effect was that the go command rebuilt and cached the standard
library on first run, which meant that compiling any program using package net

(which uses cgo) required Xcode to be installed. So Go 1.14 and later uninten-
tionally required Xcode to compile even trivial demo Go programs like a ba-
sic HTTP server. This is not the way we want Go to work on macOS. On sys-
tems without Xcode, when go tried to invoke clang, macOS popped up a box
explaining how to install it. Users simply accepted that this was necessary, per-
haps even thinking go had displayed the popup. No one reported the bug over
three years of Go releases. We didn’t notice and fix the problem until late 2022
while investigating something else. With telemetry for the miss rate in the cache
of pre-compiled standard library packages, the impact would have been obvi-
ous: all Macs running Go 1.14 or later would have a pre-installed package miss
rate of 100%. This bug wasn’t caught by our unit tests because it was caused by
the distribution build machines having a modified environment different from
actual user machines. The unit tests ran in the same modified environment as
the build and worked fine. These kinds of unexpected differences between de-
veloper machines and user machines are inevitable at scale. Instrumenting the
software on user machines is the most reliable way to understand how well it is
working.

Surveys are not enough. Surveys help us understand what users want to do
with Go, but they are only a small sample and have limited resolution. Asking
about usage of infrequently-used features on a survey wastes time for a majori-
ty of respondents, and it requires large response counts to get an accurate mea-
surement.



telemetry
https://research.swtch.com/telemetry-intro
#summary
telemetry-design
telemetry-uses


T T  O-S P

For example, we announced in the Go 1.13 release notes that future releases
would drop support for Native Client (GOOS=nacl). Similarly, we announced in
the Go 1.15 release notes that future releases would drop support for hardware
floating point on 32-bit Intel CPUs without SSE2 instructions (GO386=387).
Both of those removals went off okay, retroactively proving that our instincts
about how few people would be affected were correct. On the other hand, we
drafted an announcement for Go 1.18 removing -buildmode=shared, because
it had essentially been broken since the introduction of modules, but when we
issued Go 1.18 beta 1 we got feedback from at least a few people who were using
it in some form. We still don’t know how many people are using it or whether it
is worth the maintenance costs, so it lingers on*. Another question is how long
to keep supporting ARMv5 (GOARM=5), which doesn’t have modern atomic in-
structions. More recently, we announced that Go 1.20 will be the last release to
support macOS High Sierra and were promptly asked to keep it around*. Us-
age information would help us make more informed decisions. It’s important to
note the limitations of this usage information: if telemetry is disabled on all the
machines that use the feature in question, or if it is only used in machines that
don’t stay up long enough to report anything, then we won’t observe the usage.
Telemetry is never perfect, but it’s a useful input to the decision and much bet-
ter than guessing. A survey is not any better and usually worse: there is a lim-
it to how many questions we can reasonably ask in a survey, and asking a ques-
tion where 99% of people answer “no I don’t use that” is a waste of most peo-
ple’s time.

Why Telemetry For Open Source?

When you hear the word telemetry, if you’re like me, you may have a visceral
negative reaction to a mental image of intrusive, detailed traces of your every
keystroke and mouse click headed back to the developers of the software you’re
using. And for good reason! That mental image sounds like it must be an exag-
geration but turns out to be fairly accurate. (Citations: Kindle tracking individ-
ual page turns*, VS Code telemetry logs*, and .NET telemetry events*.)

Open-source software projects have tended to avoid this kind of telemetry, for
two reasons. The first is the significant privacy cost to users of collecting and
storing detailed activity traces. The second is the fact that access to this data
must be restricted, which would make the project less open than most strive to
be. When the choice is between this kind of invasive tracking or doing noth-
ing, doing nothing seems like an easy call. Still, doing nothing has real disadvan-
tages. It means open-source developers like me tend not to understand as well
how our software is used or how it performs. Then, because we lack that knowl-
edge, we end up wasting time by maintaining features that aren’t used, hurting
users by removing features that are still being used, and delivering a poorer user
experience by failing to notice when our software is underperforming in real-
world usage.

Some open-source projects have adopted traditional telemetry, with mixed
success and varying levels of user pushback. For example: Audacity*, GitLab*,
and Homebrew*. Homebrew’s telemetry seems to be generally accepted by users,
and VS Code’s detailed telemetry has not stopped it from being used by 74% of
developers, as reported by the 2022 StackOverflow survey*. It could even be that
the benefits from telemetry are part of how VS Code’s developers have been able
to build a tool that users like so much. Even so, the vast majority of projects,
even large ones that would benefit, stay away from telemetry.

I believe that the choice between invasive tracking and doing nothing at all
is a false dichotomy, and it’s harming open source. Not having basic informa-
tion about how their software is used and how well it is performing puts open-



https://github.com/golang/go/issues/47788
https://github.com/golang/go/issues/57125#issuecomment-1416277589
https://www.theverge.com/2020/1/31/21117217/amazon-kindle-tracking-page-turn-taps-e-reader-privacy-policy-security-whispersync
https://www.roboleary.net/tools/2022/04/20/vscode-telemetry.html
https://learn.microsoft.com/en-us/dotnet/core/tools/telemetry
https://www.theregister.com/2021/05/07/audacity_telemetry/
https://www.zdnet.com/article/gitlab-backs-down-on-planned-telemetry-changes-forced-tracking/
https://news.ycombinator.com/item?id=11566720
https://survey.stackoverflow.co/2022/#integrated-development-environment


T T  O-S P

source developers at a disadvantage compared to commercial software develop-
ers. Not having this information makes it more difficult to understand what’s
important and what isn’t working, making prioritization that much harder. Not
having clear prioritization in turn exacerbates the pre-existing problems with
maintainer burnout.

Eric Raymond famously declared that “given enough eyeballs, all bugs are
shallow,” which he explained as meaning that “[g]iven a large enough beta-tester
and co-developer base, almost every problem will be characterized quickly and
the fix obvious to someone.” Perhaps this was true in 1997 (perhaps not), but it’s
certainly not true today, as the Go macOS cache bug shows. A quarter centu-
ry later, software is much larger, and open-source software is used by far more
people who didn’t develop it and aren’t familiar with how it should and should
not behave. Eyeballs don’t scale.

I believe that open-source software projects need to explore new telemetry
designs that help developers get the information they need to work efficiently
and effectively, without collecting invasive traces of detailed user activity.

Transparent Telemetry

This series of blog posts presents one such design, which I call transparent
telemetry, because it collects as little as possible (kilobytes per year from each in-
stallation) and then publishes every bit that it collects, for public inspection and
analysis.

I’d like to explore using this system, or one like it, in the Go toolchain, which I
hope will help Go project developers and users alike. To be clear, I am only sug-
gesting that the instrumentation be added to the Go command-line tools writ-
ten and distributed by the Go team, such as the go command, the Go compil-
er, gopls, and govulncheck. I am not suggesting that instrumentation be added
by the Go compiler to all Go programs in the world: that’s clearly inappropriate.
Also, throughout these posts, “developer” refers to the authors of a given piece
of software, while “user” refers to the users of that software. From the point of
view of the Go toolchain, “developer” means a Go toolchain developers like me,
while “user” means one of the millions of Go programmers using that toolchain.

With transparent telemetry, as programs from the Go toolchain run, they
would increment counters for various events of interest (for example: cache hit,
use of a given feature, measured latency in a given range) in a per-week on-disk
file. These files hold only counter values, not user data nor user identifiers. Some
counter names include a short stack trace (function names and line offsets on-
ly, no argument data).

The Go team at Google would run a collection server. Each week, with 10%
probability (averaging ~5 times per year) the user’s Go installation would down-
load a “collection configuration” to find out which counter values are of inter-
est to the server and at what sample rate. The collection configuration would be
served in a Go module validated using the Go checksum database*, for added
confidence that all clients are being served the same configuration. Based on
the sample rates, the Go installation might send a report containing the counter
values of interest. Typical sample rates would be around 2% (averaging ~1 re-
port per installation per year), but very rare events could be sampled at a high-
er rate, up to the 10% limit. As more systems take part in transparent telemetry,
the overall sample rate on any given system will decrease, because only a fixed
number of samples is necessary*.

The report would contain no ID of any form – no user login, no machine
ID, no MAC address, no IP address, no IP address prefix, no geolocation infor-
mation, no randomly-generated pseudo-ID, no other kind of identifiers. The re-
port would contain basic information about the toolchain, such as its version



https://go.dev/design/25530-sumdb
sample


T T  O-S P

and what operating system and architecture it was built for. The report could
also contain coarse-grained information about the version of the host operating
system (for example, “Windows 8”) and other tools the Go toolchain uses, such
as the local C compiler (“gcc 2.95”).

The server would collect each day’s uploaded reports, update telemetry
graphs served publicly on go.dev, and post the full set of uploaded reports for
public download, inspection, and analysis.

Although the report would not include any identifiers, the TCP connection
uploading the report would expose the system’s public IP address to the server
if a proxy is not being used. This IP address would not be associated with the
uploaded reports in any way. Standard system maintenance, including DoS pre-
vention, might require logs that include the IP address, but uploaded reports will
be kept separate from those logs. The privacy policy would be similar to the one
used by the Go module mirror and checksum database*.

The Go home page* and download page* already include a notice about the
default use of the Go module mirror and a link to more information. That no-
tice and link would be updated to disclose on-by-default telemetry. To opt out,
users would set GOTELEMETRY=off in their environment or run a simple com-
mand like go env -w GOTELEMETRY=off; The first telemetry report is not sent
until at least one week after installation, giving ample time to opt out. Opting
out stops all collection and reporting: no “opt out” event is sent. It is simply im-
possible to see systems that install Go and then opt out in the next seven days.

Summary

Transparent telemetry has the following key properties:

– The decisions about what metrics to collect are made in an open, pub-
lic process.

– The collection configuration is automatically generated from the ac-
tively tracked metrics: no data is collected that isn’t needed for the
metrics.

– The collection configuration is served using a tamper-evident trans-
parent log, making it very difficult to serve different collection config-
urations to different systems.

– The collection configuration is a cacheable, proxied Go module, so
any privacy-enhancing local Go proxy already in use for ordinary
modules will automatically be used for collection configuration. To
further ameliorate concerns about tracking systems by the down-
loading of the collection configuration, each installation only both-
ers downloading the configuration each week with probability 10%, so
that each installation only asks for the configuration about five times
per year. [Update, 2023-02-24: The design has changed to be opt-in*,
which requires raising these probabilities.]

– Uploaded reports only include total event counts over a full week, not
any kind of time-ordered event trace.

– Uploaded reports do not include user IDs, machine IDs, or any other
kind of ID.

– Uploaded reports only contain strings that are already known to the
collection server: counter names, program names, and version strings
repeated from the collection configuration, along with the names of
functions in specific, unmodified Go toolchain programs for stack
traces. The only types of non-string data in the reports are event



https://proxy.golang.org/privacy
https://go.dev/dl
https://go.dev/dl
telemetry-feedback#opt-in


T T  O-S P

counts, dates, and line numbers.

– IP addresses exposed by the HTTP session that uploads the report are
not recorded with the reports.

– Thanks to sampling*, only a constant number of uploaded reports are
needed to achieve a specific accuracy target, no matter how many in-
stallations exist. Specifically, only about 16,000 reports are needed for
1% accuracy at a 99% confidence level. This means that as new systems
are added to the system, each system reports less often. With a conser-
vative estimate of two million Go installations, about 16,000 reporting
each week corresponds to an overall reporting rate of well under 2%
per week, meaning each installation would upload a report on average
less than once per year. [Update, 2023-02-24: The design has changed
to be opt-in*, which requires raising these probabilities.]

– The aggregate computed metrics are made public in graphical and
tabular form.

– The full raw data as collected is made public, so that project maintain-
ers have no proprietary advantage or insights in their role as the di-
rect data collector.

– The system is on by default, but opting out is easy, effective, and per-
sistent. [Update, 2023-02-24: The design has been changed to be opt-
in*.]

Next Steps

For more detail about the design, see the next post*. For more use cases, see the
post after that*.

Although these posts use Go as the example system using transparent teleme-
try, I hope that the ideas apply and can be adopted by other open-source
projects too, in their own, separate collection systems. For example, even though
VS Code collects high-resolution event traces (sometimes tens or hundreds of
events per minute), a close reading of those traces shows hardly anything is new
in each event. That is, VS Code suffers the reputational hit of collecting lots
of data but appears to gather relatively little actual information. Perhaps using
transparent telemetry in VS Code or a similar editor could offer the editor’s de-
velopers roughly equivalent insights and development velocity at a much lower
privacy cost to users.

I am posting these to start a discussion about how the Go toolchain can adopt
telemetry* in some form to help the Go toolchain developers make better deci-
sions about the development and maintenance of Go. I have written an imple-
mentation of local counter collection to convince myself it could be made cheap
enough, but no other part of the system exists today in any form. I hope that
the system can be built over the course of 2023.

* Asterisks mark hyperlinked text.



sample
telemetry-feedback#opt-in
telemetry-feedback#opt-in
telemetry-design
telemetry-uses
https://go.dev/s/telemetry-discussion

