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                    Thomas G. Szymanski

                    Princeton University 

                         Abstract 

     We  present an algorithm for finding the maximal common 

subsequence of two sequences under the restriction that each 

element of either sequence occurs at most once in the  other 

sequence.   The running time of the algorithm is shown to be 

proportional to n log  n  where  n  is  the  length  of  the 

sequences in question.  If the elements of the sequences are 

selected  from  the first n integers, then the algorithm can 

be modified to run in time O(n log log n). 
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                        Introduction 

     Let A be a finite sequence.  We denote the length of  A 

by |A|.  A[i] is the ith element of A and A[i:j] denotes the 

sequence A[i], A[i+1], ..., A[j]. 

     If U and V are finite sequences, then U is said to be a 

subsequence of V if there exist integers 1 ≤ r  < r  < ... < 

r   ≤  |V| such that U[i] = V[r ] for 1 ≤ i ≤ |U|.  U is a 

common subsequence of A and B if U is a subsequence of  both 

A   and  B.   A  maximal  common  subsequence  is  a  common 

subsequence of greatest possible  length.   The  best  known 

algorithms  [1,2,3]  for  solving the general maximal common 

subsequence problem require time proportional to the product 

of the sequences in question. 

     In this paper we shall consider  the  special  case  in 

which each element of either sequence occurs at most once in 

the  other.   This  restricted version of the problem can be 

shown  to  be  equivalent  to  the  following  combinatorial 

problems. 

     1)  Given  a permutation of the integers 1 thru n, what 

     is  the   maximal   ascending   subsequence   of   this 

     permutation? 

     2)  Let C be a finite collection of vectors in 2-space, 

     partially ordered in the natural fashion.  What is  the 

     largest linearly ordered subset of C? 

1 2

|U| i
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                     Preliminary Results 

     Throughout  this  paper  we shall use A and B to denote 

the sequences in question.  We shall assume without loss  of 

generality  that  each  element  of  either  sequence occurs 

exactly once in the other sequence (after all, an element of 

one sequence which does not occur  in  the  other  certainly 

cannot be a member of a common subsequence).  The lengths of 

the   sequences   will  then  be  denoted  by  n.   The  map 

j:{1,...,n} -> {1,...,n} will be used to associate  elements 

of  A with their "mates" in B, that is, A[i] = B[j(i)] for 1 

≤ i ≤ n. 

     We shall next introduce some notation for the length of 

the shortest prefix of B which  contains  a  subsequence  of 

length  k  in  common  with  the  first  i  elements  of  A. 

Definition  1: 

     For 0 ≤ i ≤ n and 0 ≤ k, define 

            ⎧  0                                  if k = 0 
     T  = ⎨ 
            ⎩  min {j |  A[1:i] and B[1:j] have a common 
                   subsequence of length k}       if k ≠ 0.

     We adopt the convention that  min  {}  =  ∞.   Thus if 

A = 'abcd'  and  B = 'bdca',  we  would  have  T  = 4 and 

T  = ∞. 

i,k

1,1

1,2
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     The efficient computation of T  for all i and k is  a 

key  step in our algorithm.  Let us therefore derive several 

properties of these values. 

Proposition  2: 

     For 1 ≤ i ≤ n and 0 ≤ k, T  ≤ T . 

Proof:    Immediate from the observation that  every  common 

     subsequence  of  A[1:i-1]  and  B[1:j] is also a common 

     subsequence  of  A[1:i]  and  B[1:j].    Thus   it   is 

     impossible that T  be greater than T . 

Lemma  3: 

     For 0 ≤ i ≤ n and 1 ≤ k, 

          T  < ∞ implies T  < T . 

Proof: 

     Case 1:  k = 1. 

          Then we must have i ≥ 1 which implies that T  is 

          non-zero.  Since T  = T  = 0, we have T  

          < T . 

     Case 2:  k > 1. 

          Since T  is finite, A[1:i] and B[1:T ] contain 

          a  common  subsequence  of length k but A[1:i] and 

          B[1:T -1] do not.  Since  this  latter  pair  of 

          sequences   quite   clearly   contain   a   common 

          subsequence of length k-1, we must therefore  have 

          T  ≤ T -1, which establishes the lemma. 

i,k

i,k i-1,k

i,k i-1,k

i,k i,k-1 i,k

i,k

i,k-1 i,0 i,k-1

i,k

i,k i,k

i,k

i,k-1 i,k
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Lemma  4: 

     For 1 ≤ i ≤ n and 1 ≤ k, 

                 ⎧  min {T ,j(i)}   if j(i) > T  
          T  = ⎨ 
                 ⎩  T                         otherwise.

Proof:  We consider the two cases. 

     Case 1: j(i) > T . 

          Clearly   j(i)-1  ≥  T ,  which  means  that 

          A[1:i-1]  and   B[1:j(i)-1]   contain   a   common 

          subsequence  of length k-1.  Therefore, A[1:i] and 

          B[1:j(i)] must contain  a  common  subsequence  of 

          length   k.    We   conclude  that  T   ≤  j(i). 

          Combining this with Proposition 2, we establish 

 (1)            T  ≤ min {T ,j(i)}. 

          Since T  has thus been shown to  be  finite,  we 

          see  that A[1:i] and B[1:T ] contain some common 

          subsequence S of length k.  Let us suppose that 

 (2)            T  < min {T ,j(i)}. 

          By (2), j(i) > T  and so B[j(i)] = A[i] is not a 

          member of S.  Thus S is also a common  subsequence 

          of  A[1:i-1]  and  B[1:T ].   Since  |S| = k, we 

          conclude that T  ≤ T  which clearly violates 

          supposition (2).  We conclude  then  that  T   ≥ 

          min {T ,j(i)}  which  combined  with (1) above 

i-1,k i-1,k-1
i,k

i-1,k

i-1,k-1

i-1,k-1

i,k

i,k i-1,k

i,k

i,k

i,k i-1,k

i,k

i,k

i-1,k i,k

i,k

i-1,k
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          yields T  = min {T ,j(i)}. 

     Case 2: j(i) ≤ T . 

          Let us suppose that 

 (3)            T  < T . 

          Then  A[1:i]  and  B[1:T ]  contain   a   common 

          subsequence  S  of  length  k,  but  A[1:i-1]  and 

          B[1:T ] do not.  Thus  A[i]  must  be  the  last 

          element  of  S.   Therefore  A[1:i]  and B[1:j(i)] 

          contain  S  and  hence  A[1:i-1]  and  B[1:j(i)-1] 

          contain  a common subsequence of length k-1.  Thus 

          T  < j(i) which violates the hypothesis  for 

          this  case.   Since supposition (3) was incorrect, 

          we must have T  ≥  T   which  combined  with 

          Proposition 2 yields T  = T . 

     The  next theorem implies a simple inductive method for 

computing all T . 

Theorem  5: 

     For 1 ≤ i ≤ n and 1 ≤ k, 

            ⎧  j(i)    if k = T  < j(i) < T  
     T  = ⎨ 
            ⎩  T    otherwise.

Proof: 

     Case 1: j(i) ≤ T . 

          Then T  = T  by Lemma 4. 

i,k i-1,k

i-1,k-1

i,k i-1,k

i,k

i,k

i-1,k-1

i,k i-1,k

i,k i-1,k
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     Case 2: T  < j(i) < T . 

          By Lemma 4, we  have  T   =  min{T ,j(i)}  = 

          j(i). 

     Case 3: T  ≤ j(i). 

          Thus  T   is  finite.   By  Lemma  3,  we must 

          therefore have T  < T  and so T  < 

          j(i).  Applying Lemma 4  again,  we  have  T   = 

          min {T ,j(i)} = T . 

     Our  next piece of notation assigns to each position of 

the A sequence (and its matching B position) the  length  of 

the longest common subsequence appearing to its left. 

Definition  6: 

     Define  L   to  be  the  length  of  the longest common 

     subsequence of A[1:i] and B[1:j(i)]. 

     As we shall soon see, a maximal common subsequence  may 

easily be constructed if we know the value of L  for 1 ≤ i ≤

n.  The next theorem relates the L 's to the T 's. 

Theorem  7: 

     If T  = j(i) then L  = k. 

Proof:    Since j(i) is finite, we can conclude from Lemma 3 

     that  T   >  j(i).   That  is, A[1:i] and B[1:j(i)] 

     contain a common subsequence of length k  but  none  of 

     length k+1.  Hence L  = k. 

i-1,k-1 i-1,k

i,k i-1,k

i-1,k

i-1,k

i-1,k-1 i-1,k i-1,k-1

i,k

i-1,k i-1,k
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                          The Algorithm

     We can now present our algorithm. 

Algorithm  A: 

Input:  sequences A[1:n] and B[1:n] such that each element 

        of A occurs exactly once in B and vice versa. 

Output: a maximal common subsequence of A and B. 

         begin 
            integer array L[1:n], T[0:n+1], J[1:n]; 
            sequence SEQ[1:n]; 
step1:      for i <- 1 to n do 
               J[i] <- the unique j such that A[i] = B[j]; 
step2:      T[0] <- 0; 
            for k <- 1 to n+1 do 
               T[k] <- "∞"; 
step3:      for i <- 1 to n do 
               begin 
                  k <- unique k such that T[k-1] < J[i] < T[k]; 
                  T[k] <- J[i]; 
                  L[i] <- k; 
               end; 
step4:      lastj <- n+1; 
            kmax <- max {L[i] | 1 ≤ i ≤ n}; 
            k <- kmax; 
          * for i <- n downto 1 do 
               if L[i] = k and J[i] < lastj then 
                  begin 
                     SEQ[k] <- A[i]; 
                     lastj <- J[i]; 
                     k <- k-1; 
                  end; 
step5:      for k <- 1 to kmax do 
               print SEQ[k]; 
         end; 

 * This line is missing in the original and was added during retyping. 
   (Otherwise i is undefined and the subsequent code mis-indented.) 
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            Correctness Proof and Time Analysis 

Theorem  8: 

     Algorithm   A   correctly   prints   a  maximal  common 

     subsequence of its inputs. 

Proof:    The key observation is that T[k] = T   at  the 

     start  of  the ith iteration of the loop of step 3, and 

     T[k] = T  at the end of the  ith  iteration  of  this 

     same loop.  This fact follows from an easy induction on 

     i,  using  Theorem  5  to  relate  the value of T  to 

     T  and Lemma 3 to show that exactly one of the  T's 

     changes  value  per  iteration.   (Note that for all k, 

     T  is either "∞"  or is equal to j(i') for some  i' 

     < i.  Thus j(i) can never equal T  for any k). 

          Given  the  above  behavior  of the T's, Theorem 6 

     then implies that L[i] = L  for 1 ≤ i ≤ n at the end of 

     step 3. 

          In order to print a maximal common subsequence, we 

     observe that if L  > 1 then there exists an i' < i such 

     that L  = L -1 and  j(i')  <  j(i).   Thus  a  maximal 

     common  subsequence  of  A[1:i]  and  B[1:j(i)]  may be 

     formed by concatenating A[i] onto the end of a  maximal 

     common  subsequence of A[1:i'] and B[1:j(i')].  This is 

     exactly what step 4 does. 

i-1,k

i,k

i,k

i-1,k
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i-1,k
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Theorem  9: 

     Algorithm A requires at most O(n log n) units  of  time 

     to process two input sequences of length n. 

Proof:     Step 1, the computation of the j function, can be 

     performed  by   sorting   the   two   input   sequences 

     (remembering the original position of each element) and 

     then  merging the sequences together.  This clearly can 

     be done in O(n log n) steps. 

          Step 2, the initialization of the T  array,  takes 

     O(n) steps. 

          Step  3,  the computation of the L array, involves 

     2n simple assignments plus n searches of the  T  array. 

     Each  such  search can be accomplished in time O(log n) 

     using the well-known  binary  search  technique.   Thus 

     step 3 requires at most O(n log n) time. 

          Step  4,  the  actual  determination  of a maximal 

     common subsequence, clearly requires O(n) steps as does 

     step 5, the printing of the subsequence. 

     A similar O(n log n) algorithm for  Problem  2  of  our 

introduction  has been independently discovered by A. C. Yao 

and F. F. Yao [5]. 
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Corollary  10: 

     Algorithm A requires at most  O(n log log n)  units  of 

     time to process two sequences which are permutations of 

     the first n integers. 

Proof: 

          Step  1  can  be  performed  in  time O(n) using a 

     distribution sort. 

          In Step 3, each search  of  the  T  array  can  be 

     performed   in   time   O(log log n)   time  using  the 

     techniques of van Emde Boas[4].  These techniques allow 

     us to  efficiently  perform  certain  manipulations  on 

     subsets  of  the  first n integers.  More specifically, 

     the  following  operations  are  available:  insert  an 

     integer  into  a set, delete an integer from a set, and 

     determine the  greatest  integer  in  a  set  which  is 

     smaller than some specified search argument.  Moreover, 

     each  of  these  operations  may  be  performed in time 

     O(log log n).  These three operations are exactly  what 

     we need to perform Step 3. 
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