
 A SPECIAL CASE OF THE MAXIMAL
 COMMON SUBSEQUENCE PROBLEM

 Thomas G. Szymanski

 Technical Report #170
 January 1975

 PRINCETON UNIVERSITY
 Department of Electrical Engineering
 Computer Science Laboratory

 Part of this work was supported by NSF Grant GJ-1052.

* Retyped from a blurry photocopy
 by Russ Cox, rsc@swtch.com, October 2020.
 https://research.swtch.com/tgs170.html
 https://research.swtch.com/tgs170.pdf

 A SPECIAL CASE OF THE MAXIMAL COMMON SUBSEQUENCE PROBLEM

 Thomas G. Szymanski

 Princeton University

 Abstract

 We present an algorithm for finding the maximal common

subsequence of two sequences under the restriction that each

element of either sequence occurs at most once in the other

sequence. The running time of the algorithm is shown to be

proportional to n log n where n is the length of the

sequences in question. If the elements of the sequences are

selected from the first n integers, then the algorithm can

be modified to run in time O(n log log n).

 1

 Introduction

 Let A be a finite sequence. We denote the length of A

by |A|. A[i] is the ith element of A and A[i:j] denotes the

sequence A[i], A[i+1], ..., A[j].

 If U and V are finite sequences, then U is said to be a

subsequence of V if there exist integers 1 ≤ r < r < ... <

r ≤ |V| such that U[i] = V[r] for 1 ≤ i ≤ |U|. U is a

common subsequence of A and B if U is a subsequence of both

A and B. A maximal common subsequence is a common

subsequence of greatest possible length. The best known

algorithms [1,2,3] for solving the general maximal common

subsequence problem require time proportional to the product

of the sequences in question.

 In this paper we shall consider the special case in

which each element of either sequence occurs at most once in

the other. This restricted version of the problem can be

shown to be equivalent to the following combinatorial

problems.

 1) Given a permutation of the integers 1 thru n, what

 is the maximal ascending subsequence of this

 permutation?

 2) Let C be a finite collection of vectors in 2-space,

 partially ordered in the natural fashion. What is the

 largest linearly ordered subset of C?

1 2

|U| i

 2

 Preliminary Results

 Throughout this paper we shall use A and B to denote

the sequences in question. We shall assume without loss of

generality that each element of either sequence occurs

exactly once in the other sequence (after all, an element of

one sequence which does not occur in the other certainly

cannot be a member of a common subsequence). The lengths of

the sequences will then be denoted by n. The map

j:{1,...,n} -> {1,...,n} will be used to associate elements

of A with their "mates" in B, that is, A[i] = B[j(i)] for 1

≤ i ≤ n.

 We shall next introduce some notation for the length of

the shortest prefix of B which contains a subsequence of

length k in common with the first i elements of A.

Definition 1:

 For 0 ≤ i ≤ n and 0 ≤ k, define

 ⎧ 0 if k = 0
 T = ⎨
 ⎩ min {j | A[1:i] and B[1:j] have a common
 subsequence of length k} if k ≠ 0.

 We adopt the convention that min {} = ∞. Thus if

A = 'abcd' and B = 'bdca', we would have T = 4 and

T = ∞.

i,k

1,1

1,2

 3

 The efficient computation of T for all i and k is a

key step in our algorithm. Let us therefore derive several

properties of these values.

Proposition 2:

 For 1 ≤ i ≤ n and 0 ≤ k, T ≤ T .

Proof: Immediate from the observation that every common

 subsequence of A[1:i-1] and B[1:j] is also a common

 subsequence of A[1:i] and B[1:j]. Thus it is

 impossible that T be greater than T .

Lemma 3:

 For 0 ≤ i ≤ n and 1 ≤ k,

 T < ∞ implies T < T .

Proof:

 Case 1: k = 1.

 Then we must have i ≥ 1 which implies that T is

 non-zero. Since T = T = 0, we have T

 < T .

 Case 2: k > 1.

 Since T is finite, A[1:i] and B[1:T] contain

 a common subsequence of length k but A[1:i] and

 B[1:T -1] do not. Since this latter pair of

 sequences quite clearly contain a common

 subsequence of length k-1, we must therefore have

 T ≤ T -1, which establishes the lemma.

i,k

i,k i-1,k

i,k i-1,k

i,k i,k-1 i,k

i,k

i,k-1 i,0 i,k-1

i,k

i,k i,k

i,k

i,k-1 i,k

 4

Lemma 4:

 For 1 ≤ i ≤ n and 1 ≤ k,

 ⎧ min {T ,j(i)} if j(i) > T
 T = ⎨
 ⎩ T otherwise.

Proof: We consider the two cases.

 Case 1: j(i) > T .

 Clearly j(i)-1 ≥ T , which means that

 A[1:i-1] and B[1:j(i)-1] contain a common

 subsequence of length k-1. Therefore, A[1:i] and

 B[1:j(i)] must contain a common subsequence of

 length k. We conclude that T ≤ j(i).

 Combining this with Proposition 2, we establish

 (1) T ≤ min {T ,j(i)}.

 Since T has thus been shown to be finite, we

 see that A[1:i] and B[1:T] contain some common

 subsequence S of length k. Let us suppose that

 (2) T < min {T ,j(i)}.

 By (2), j(i) > T and so B[j(i)] = A[i] is not a

 member of S. Thus S is also a common subsequence

 of A[1:i-1] and B[1:T]. Since |S| = k, we

 conclude that T ≤ T which clearly violates

 supposition (2). We conclude then that T ≥

 min {T ,j(i)} which combined with (1) above

i-1,k i-1,k-1
i,k

i-1,k

i-1,k-1

i-1,k-1

i,k

i,k i-1,k

i,k

i,k

i,k i-1,k

i,k

i,k

i-1,k i,k

i,k

i-1,k

 5

 yields T = min {T ,j(i)}.

 Case 2: j(i) ≤ T .

 Let us suppose that

 (3) T < T .

 Then A[1:i] and B[1:T] contain a common

 subsequence S of length k, but A[1:i-1] and

 B[1:T] do not. Thus A[i] must be the last

 element of S. Therefore A[1:i] and B[1:j(i)]

 contain S and hence A[1:i-1] and B[1:j(i)-1]

 contain a common subsequence of length k-1. Thus

 T < j(i) which violates the hypothesis for

 this case. Since supposition (3) was incorrect,

 we must have T ≥ T which combined with

 Proposition 2 yields T = T .

 The next theorem implies a simple inductive method for

computing all T .

Theorem 5:

 For 1 ≤ i ≤ n and 1 ≤ k,

 ⎧ j(i) if k = T < j(i) < T
 T = ⎨
 ⎩ T otherwise.

Proof:

 Case 1: j(i) ≤ T .

 Then T = T by Lemma 4.

i,k i-1,k

i-1,k-1

i,k i-1,k

i,k

i,k

i-1,k-1

i,k i-1,k

i,k i-1,k

i,k

i-1,k-1 i-1,k
i,k

i-1,k

i-1,k-1

i,k i-1,k

 6

 Case 2: T < j(i) < T .

 By Lemma 4, we have T = min{T ,j(i)} =

 j(i).

 Case 3: T ≤ j(i).

 Thus T is finite. By Lemma 3, we must

 therefore have T < T and so T <

 j(i). Applying Lemma 4 again, we have T =

 min {T ,j(i)} = T .

 Our next piece of notation assigns to each position of

the A sequence (and its matching B position) the length of

the longest common subsequence appearing to its left.

Definition 6:

 Define L to be the length of the longest common

 subsequence of A[1:i] and B[1:j(i)].

 As we shall soon see, a maximal common subsequence may

easily be constructed if we know the value of L for 1 ≤ i ≤

n. The next theorem relates the L 's to the T 's.

Theorem 7:

 If T = j(i) then L = k.

Proof: Since j(i) is finite, we can conclude from Lemma 3

 that T > j(i). That is, A[1:i] and B[1:j(i)]

 contain a common subsequence of length k but none of

 length k+1. Hence L = k.

i-1,k-1 i-1,k

i,k i-1,k

i-1,k

i-1,k

i-1,k-1 i-1,k i-1,k-1

i,k

i-1,k i-1,k

i

i

i i,k

i,k i

i,k+1

i

 7

 The Algorithm

 We can now present our algorithm.

Algorithm A:

Input: sequences A[1:n] and B[1:n] such that each element

 of A occurs exactly once in B and vice versa.

Output: a maximal common subsequence of A and B.

 begin
 integer array L[1:n], T[0:n+1], J[1:n];
 sequence SEQ[1:n];
step1: for i <- 1 to n do
 J[i] <- the unique j such that A[i] = B[j];
step2: T[0] <- 0;
 for k <- 1 to n+1 do
 T[k] <- "∞";
step3: for i <- 1 to n do
 begin
 k <- unique k such that T[k-1] < J[i] < T[k];
 T[k] <- J[i];
 L[i] <- k;
 end;
step4: lastj <- n+1;
 kmax <- max {L[i] | 1 ≤ i ≤ n};
 k <- kmax;
 * for i <- n downto 1 do
 if L[i] = k and J[i] < lastj then
 begin
 SEQ[k] <- A[i];
 lastj <- J[i];
 k <- k-1;
 end;
step5: for k <- 1 to kmax do
 print SEQ[k];
 end;

 * This line is missing in the original and was added during retyping.
 (Otherwise i is undefined and the subsequent code mis-indented.)

 8

 Correctness Proof and Time Analysis

Theorem 8:

 Algorithm A correctly prints a maximal common

 subsequence of its inputs.

Proof: The key observation is that T[k] = T at the

 start of the ith iteration of the loop of step 3, and

 T[k] = T at the end of the ith iteration of this

 same loop. This fact follows from an easy induction on

 i, using Theorem 5 to relate the value of T to

 T and Lemma 3 to show that exactly one of the T's

 changes value per iteration. (Note that for all k,

 T is either "∞" or is equal to j(i') for some i'

 < i. Thus j(i) can never equal T for any k).

 Given the above behavior of the T's, Theorem 6

 then implies that L[i] = L for 1 ≤ i ≤ n at the end of

 step 3.

 In order to print a maximal common subsequence, we

 observe that if L > 1 then there exists an i' < i such

 that L = L -1 and j(i') < j(i). Thus a maximal

 common subsequence of A[1:i] and B[1:j(i)] may be

 formed by concatenating A[i] onto the end of a maximal

 common subsequence of A[1:i'] and B[1:j(i')]. This is

 exactly what step 4 does.

i-1,k

i,k

i,k

i-1,k

i-1,k

i-1,k

i

i

i' i

 9

Theorem 9:

 Algorithm A requires at most O(n log n) units of time

 to process two input sequences of length n.

Proof: Step 1, the computation of the j function, can be

 performed by sorting the two input sequences

 (remembering the original position of each element) and

 then merging the sequences together. This clearly can

 be done in O(n log n) steps.

 Step 2, the initialization of the T array, takes

 O(n) steps.

 Step 3, the computation of the L array, involves

 2n simple assignments plus n searches of the T array.

 Each such search can be accomplished in time O(log n)

 using the well-known binary search technique. Thus

 step 3 requires at most O(n log n) time.

 Step 4, the actual determination of a maximal

 common subsequence, clearly requires O(n) steps as does

 step 5, the printing of the subsequence.

 A similar O(n log n) algorithm for Problem 2 of our

introduction has been independently discovered by A. C. Yao

and F. F. Yao [5].

 10

Corollary 10:

 Algorithm A requires at most O(n log log n) units of

 time to process two sequences which are permutations of

 the first n integers.

Proof:

 Step 1 can be performed in time O(n) using a

 distribution sort.

 In Step 3, each search of the T array can be

 performed in time O(log log n) time using the

 techniques of van Emde Boas[4]. These techniques allow

 us to efficiently perform certain manipulations on

 subsets of the first n integers. More specifically,

 the following operations are available: insert an

 integer into a set, delete an integer from a set, and

 determine the greatest integer in a set which is

 smaller than some specified search argument. Moreover,

 each of these operations may be performed in time

 O(log log n). These three operations are exactly what

 we need to perform Step 3.

 11

 Acknowledgement

 The author is indebted to Harold Stone, who first

suggested this variant of the general problem, and to

Jeffrey Ullman for several enlightening conversations.

 References

[1] Chvatal, V., D. A. Klarner, and D. E. Knuth, "Selected

 Combinatorial Research Problems", STAN-CS-72-292,

 Stanford University, Stanford, Ca. (June 1972) .

[2] Hirschberg, D. S., "A Linear Space Algorithm for

 Computing Maximal Common Subsequences", to appear in

 Communications of the Association for Computing

 Machinary (May, 1975).

[3] Wagner, R. A., and M. J. Fischer, "The String-to-String

 Correction Problem", Journal of the Association for

 Computing Machinary 12:1 (January 1974) pp. 168-173.

[4] van Emde Boas, P., "An O(n log log n) On-line Algorithm

 for the Insert-Extract Min Problem", TR 74-221,

 Department of Computer Science, Cornell University,

 Ithaca, New York, (Dec. 1974).

[5] Yao, A. C., and F. F. Yao, "On Computing the Rank

 Function for a Set of Vectors", UIUCDCS-R-75-699,

 Department of Computer Science, University of Illinois

 at Urbana-Champaign, Urbana, Illinois (Feb. 1975).

