
Transparent Logs for Skeptical Clients

Russ Cox
March 1, 2019

research.swtch.com/tlog

Suppose we want to maintain and publish a public, append-only log of data.
Suppose also that clients are skeptical about our correct implementation and op-
eration of the log: it might be to our advantage to leave things out of the log,
or to enter something in the log today and then remove it tomorrow. How can
we convince the client we are behaving?

This post is about an elegant data structure we can use to publish a log of N
records with these three properties:

1. For any specific record R in a log of length N, we can construct a proof
of length O(lg N) allowing the client to verify that R is in the log.

2. For any earlier log observed and remembered by the client, we can
construct a proof of length O(lg N) allowing the client to verify that
the earlier log is a prefix of the current log.

3. An auditor can efficiently iterate over the records in the log.

(In this post, “lg N” denotes the base-2 logarithm of N, reserving the word “log”
to mean only “a sequence of records.”)

The Certificate Transparency project publishes TLS certificates in this kind
of log. Google Chrome uses property (1) to verify that an enhanced validation
certificate is recorded in a known log before accepting the certificate. Proper-
ty (2) ensures that an accepted certificate cannot later disappear from the log
undetected. Property (3) allows an auditor to scan the entire certificate log at
any later time to detect misissued or stolen certificates. All this happens without
blindly trusting that the log itself is operating correctly. Instead, the clients of
the log—Chrome and any auditors—verify correct operation of the log as part
of accessing it.

This post explains the design and implementation of this verifiably tamper-
evident log, also called a transparent log. To start, we need some cryptographic
building blocks.

Cryptographic Hashes, Authentication, and Commitments

A cryptographic hash function is a deterministic function H that maps an arbi-
trary-size message M to a small fixed-size output H(M), with the property that
it is infeasible in practice to produce any pair of distinct messages M₁ ≠ M₂ with
identical hashes H(M₁) = H(M₂). Of course, what is feasible in practice changes.
In 1995, SHA-1 was a reasonable cryptographic hash function. In 2017, SHA-1
became a broken cryptographic hash function, when researchers identified and
demonstrated a practical way to generate colliding messages. Today, SHA-256 is
believed to be a reasonable cryptographic hash function. Eventually it too will
be broken.

A (non-broken) cryptographic hash function provides a way to bootstrap a
small amount of trusted data into a much larger amount of data. Suppose I want
to share a very large file with you, but I am concerned that the data may not ar-
rive intact, whether due to random corruption or a man-in-the-middle attack.
I can meet you in person and hand you, written on a piece of paper, the SHA-
256 hash of the file. Then, no matter what unreliable path the bits take, you can
check whether you got the right ones by recomputing the SHA-256 hash of the
download. If it matches, then you can be certain, assuming SHA-256 has not
been broken, that you downloaded the exact bits I intended. The SHA-256 hash



https://research.swtch.com/tlog
https://www.certificate-transparency.org/
https://en.wikipedia.org/wiki/Extended_Validation_Certificate
https://shattered.io/
TODO

T L  S C

authenticates—that is, it proves the authenticity of—the downloaded bits, even
though it is only 256 bits and the download is far larger.

We can also turn the scenario around, so that, instead of distrusting the net-
work, you distrust me. If I tell you the SHA-256 of a file I promise to send,
the SHA-256 serves as a verifiable commitment to a particular sequence of bits.
I cannot later send a different bit sequence and convince you it is the file I
promised.

A single hash can be an authentication or commitment of an arbitrarily large
amount of data, but verification then requires hashing the entire data set. To al-
low selective verification of subsets of the data, we can use not just a single hash
but instead a balanced binary tree of hashes, known as a Merkle tree.

Merkle Trees

A Merkle tree is constructed from N records, where N is a power of two. First,
each record is hashed independently, producing N hashes. Then pairs of hashes
are themselves hashed, producing N/2 new hashes. Then pairs of those hashes
are hashed, to produce N/4 hashes, and so on, until a single hash remains. This
diagram shows the Merkle tree of size N = 16:

level 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

level 1 0 1 2 3 4 5 6 7

level 2 0 1 2 3

level 3 0 1

level 4 0

The boxes across the bottom represent the 16 records. Each number in the tree
denotes a single hash, with inputs connected by downward lines. We can refer
to any hash by its coordinates: level L hash number K, which we will abbrevi-
ate h(L, K). At level 0, each hash’s input is a single record; at higher levels, each
hash’s input is a pair of hashes from the level below.

h(0, K) = H(record K)
h(L+1, K) = H(h(L, 2 K), h(L, 2 K+1))

To prove that a particular record is contained in the tree represented by a giv-
en top-level hash (that is, to allow the client to authenticate a record, or verify a
prior commitment, or both), it suffices to provide the hashes needed to recom-
pute the overall top-level hash from the record’s hash. For example, suppose we
want to prove that a certain bit string B is in fact record 9 in a tree of 16 records
with top-level hash T. We can provide those bits along with the other hash in-
puts needed to reconstruct the overall tree hash using those bits. Specifically, the
client can derive as well as we can that: 2501024640210570.QS

T=h(4, 0)
=H(h(3, 0), h(3, 1))
=H(h(3, 0), H(h(2, 2),h(2, 3)))
=H(h(3, 0), H(H(h(1, 4),h(1, 5)),h(2, 3)))
=H(h(3, 0), H(H(H(h(0, 8), h(0, 9)),h(1, 5)),h(2, 3)))
=H(h(3, 0), H(H(H(h(0, 8), H(record 9)),h(1, 5)),h(2, 3)))
=H(h(3, 0), H(H(H(h(0, 8), H(B)),h(1, 5)),h(2, 3)))

If we give the client the values [h(3, 0), h(0, 8), h(1, 5), h(2, 3)], the client can
calculate H(B) and then combine all those hashes using the formula and check
whether the result matches T. If so, the client can be cryptographically certain
that B really is record 9 in the tree with top-level hash T. In effect, proving that



T L  S C

B is a record in the Merkle tree with hash T is done by giving a verifiable com-
putation of T with H(B) as an input.

Graphically, the proof consists of the sibling hashes (circled in blue) of nodes
along the path (highlighted in yellow) from the record being proved up to the
tree root.

level 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

level 1 0 1 2 3 4 5 6 7

level 2 0 1 2 3

level 3 0 1

level 4 0

In general, the proof that a given record is contained in the tree requires lg N
hashes, one for each level below the root.

Building our log as a sequence of records hashed in a Merkle tree would give
us a way to write an efficient (lg N-length) proof that a particular record is in
the log. But there are two related problems to solve: our log needs to be defined
for any length N, not just powers of two, and we need to be able to write an effi-
cient proof that one log is a prefix of another.

A Merkle Tree-Structured Log

To generalize the Merkle tree to non-power-of-two sizes, we can write N as a
sum of decreasing powers of two, then build complete Merkle trees of those
sizes for successive sections of the input, and finally hash the at-most-lg N com-
plete trees together to produce a single top-level hash. For example, 13 = 8 + 4
+ 1:

level 0 0 1 2 3 4 5 6 7 8 9 10 11 12

level 1 0 1 2 3 4 5

level 2 0 1 2

level 3 0

level 4

x

x

The new hashes marked “x” combine the complete trees, building up from right
to left, to produce the overall tree hash. Note that these hashes necessarily com-
bine trees of different sizes and therefore hashes from different levels; for exam-
ple, h(3, x) = H(h(2, 2), h(0, 12)).

The proof strategy for complete Merkle trees applies equally well to these in-
complete trees. For example, the proof that record 9 is in the tree of size 13 is
[h(3, 0), h(0, 8), h(1, 5), h(0, 12)]:

level 0 0 1 2 3 4 5 6 7 8 9 10 11 12

level 1 0 1 2 3 4 5

level 2 0 1 2

level 3 0

level 4

x

x

Note that h(0, 12) is included in the proof because it is the sibling of h(2, 2) in
the computation of h(3, x).



T L  S C

We still need to be able to write an efficient proof that the log of size N with
tree hash T is a prefix of the log of size N ′ (> N) with tree hash T ′. Earlier, prov-
ing that B is a record in the Merkle tree with hash T was done by giving a veri-
fiable computation of T using H(B) as an input. To prove that the log with tree
hash T is included in the log with tree hash T ′, we can follow the same idea:
give verifiable computations of T and T ′, in which all the inputs to the compu-
tation of T are also inputs to the computation of T ′. For example, consider the
trees of size 7 and 13:

level 0 0 1 2 3 4 5 6 7 8 9 10 11 12

level 1 0 1 2 3 4 5

level 2 0 1 2

level 3 0

level 4

x

x

y

y

In the diagram, the “x” nodes complete the tree of size 13 with hash T₁₃, while
the “y” nodes complete the tree of size 7 with hash T₇. To prove that T₇’s leaves
are included in T₁₃, we first give the computation of T₇ in terms of complete
subtrees (circled in blue): 3183058750.QS

T₇=H(h(2, 0), H(h(1, 2), h(0, 6)))

Then we give the computation of T₁₃, expanding hashes as needed to expose the
same subtrees. Doing so exposes sibling subtrees (circled in red):
3183058750.QS

T₁₃=H(h(3, 0),H(h(2, 2), h(0, 12)))
=H(H(h(2, 0), h(2, 1)),H(h(2, 2), h(0, 12)))
=H(H(h(2, 0), H(h(1, 2), h(1, 3))),H(h(2, 2), h(0, 12)))
=H(H(h(2, 0), H(h(1, 2), H(h(0, 6), h(0, 7)))),H(h(2, 2), h(0, 12)))

Assuming the client knows the trees have sizes 7 and 13, it can derive the re-
quired decomposition itself. We need only supply the hashes [h(2, 0), h(1, 2),
h(0, 6), h(0, 7), h(2, 2), h(0, 12)]. The client recalculates the T₇ and T₁₃ implied
by the hashes and checks that they match the originals.

Note that these proofs only use hashes for completed subtrees—that is, num-
bered hashes, never the “x” or “y” hashes that combine differently-sized subtrees.
The numbered hashes are permanent, in the sense that once such a hash appears
in a tree of a given size, that same hash will appear in all trees of larger sizes. In
contrast, the “x” and “y” hashes are ephemeral—computed for a single tree and
never seen again. The hashes common to the decomposition of two different-
sized trees therefore must always be permanent hashes. The decomposition of
the larger tree could make use of ephemeral hashes for the exposed siblings, but
we can easily use only permanent hashes instead. In the example above, the re-
construction of T₁₃ from the parts of T₇ uses h(2, 2) and h(0, 12) instead of as-
suming access to T₁₃’s h(3, x). Avoiding the ephemeral hashes extends the max-
imum record proof size from lg N hashes to 2 lg N hashes and the maximum
tree proof size from 2 lg N hashes to 3 lg N hashes. Note that most top-level
hashes, including T₇ and T₁₃, are themselves ephemeral hashes, requiring up to
lg N permanent hashes to compute. The exceptions are the power-of-two-sized
trees T₁, T₂, T₄, T₈, and so on.



T L  S C

Storing a Log

Storing the log requires only a few append-only files. The first file holds the log
record data, concatenated. The second file is an index of the first, holding a se-
quence of int64 values giving the start offset of each record in the first file. This
index allows efficient random access to any record by its record number. While
we could recompute any hash tree from the record data alone, doing so would
require N–1 hash operations for a tree of size N. Efficient generation of proofs
therefore requires precomputing and storing the hash trees in some more acces-
sible form.

As we noted in the previous section, there is significant commonality be-
tween trees. In particular, the latest hash tree includes all the permanent hashes
from all earlier hash trees, so it is enough to store “only” the latest hash tree. A
straightforward way to do this is to maintain lg N append-only files, each hold-
ing the sequence of hashes at one level of the tree. Because hashes are fixed size,
any particular hash can be read efficiently by reading from the file at the appro-
priate offset.

To write a new log record, we must append the record data to the data file,
append the offset of that data to the index file, and append the hash of the data
to the level-0 hash file. Then, if we completed a pair of hashes in the level-0 hash
file, we append the hash of the pair to the level-1 hash file; if that completed a
pair of hashes in the level-1 hash file, we append the hash of that pair to the lev-
el-2 hash file; and so on up the tree. Each log record write will append a hash to
at least one and at most lg N hash files, with an average of just under two new
hashes per write. (A binary tree with N leaves has N–1 interior nodes.)

It is also possible to interlace lg N append-only hash files into a single ap-
pend-only file, so that the log can be stored in only three files: record data,
record index, and hashes. See Appendix A for details. Another possibility is to
store the log in a pair of database tables, one for record data and one for hash-
es (the database can provide the record index itself).

Whether in files or in database tables, the stored form of the log is append-
only, so cached data never goes stale, making it trivial to have parallel, read-only
replicas of a log. In contrast, writing to the log is inherently centralized, requir-
ing a dense sequence numbering of all records (and in many cases also dupli-
cate suppression). An implementation using the two-table database representa-
tion can delegate both replication and coordination of writes to the underlying
database, especially if the underlying database is globally-replicated and consis-
tent, like Google Cloud Spanner or CockroachDB.

It is of course not enough just to store the log. We must also make it avail-
able to clients.

Serving a Log

Remember that each client consuming the log is skeptical about the log’s correct
operation. The log server must make it easy for the client to verify two things:
first, that any particular record is in the log, and second, that the current log is
an append-only extension of a previously-observed earlier log.

To be useful, the log server must also make it easy to find a record given some
kind of lookup key, and it must allow an auditor to iterate over the entire log
looking for entries that don’t belong.



https://ai.google/research/pubs/pub39966
https://www.cockroachlabs.com/docs/stable/architecture/overview.html

T L  S C

To do all this, the log server must answer five queries:

1. Latest() returns the current log size and top-level hash, cryptographi-
cally signed by the server for non-repudiation.

2. RecordProof(R, N) returns the proof that record R is contained in the
tree of size N.

3. TreeProof(N, N ′) returns the proof that the tree of size N is a prefix of
the tree of size N ′.

4. Lookup(K) returns the record index R matching lookup key K, if any.

5. Data(R) returns the data associated with record R.

Verifying a Log

The client uses the first three queries to maintain a cached copy of the most re-
cent log it has observed and make sure that the server never removes anything
from an observed log. To do this, the client caches the most recently observed
log size N and top-level hash T. Then, before accepting data bits B as record
number R, the client verifies that R is included in that log. If necessary (that is,
if R ≥ its cached N), the client updates its cached N, T to those of the latest log,
but only after verifying that the latest log includes everything from the current
cached log. In pseudocode:

validate(bits B as record R):

if R ≥ cached.N:

N, T = server.Latest()

if server.TreeProof(cached.N, N) cannot be verified:

fail loudly

cached.N, cached.T = N, T

if server.RecordProof(R, cached.N) cannot be verified using B:

fail loudly

accept B as record R

The client’s proof verification ensures that the log server is behaving correctly,
at least as observed by the client. If a devious server can distinguish individual
clients, it can still serve different logs to different clients, so that a victim client
sees invalid entries never exposed to other clients or auditors. But if the serv-
er does lie to a victim, the fact that the victim requires any later log to include
what it has seen before means the server must keep up the lie, forever serving an
alternate log containing the lie. This makes eventual detection more likely. For
example, if the victim ever arrived through a proxy or compared its cached log
against another client, or if the server ever made a mistake about which clients
to lie to, the inconsistency would be readily exposed. Requiring the server to
sign the Latest() response makes it impossible for the server to disavow the in-
consistency, except by claiming to have been compromised entirely.

The client-side checks are a little bit like how a Git client maintains its own
cached copy of a remote repository and then, before accepting an update dur-
ing git pull, verifies that the remote repository includes all local commits. But
the transparent log client only needs to download lg N hashes for the verifica-
tion, while Git downloads all cached.N – N new data records, and more general-
ly, the transparent log client can selectively read and authenticate individual en-
tries from the log, without being required to download and store a full copy of
the entire log.



T L  S C

Tiling a Log

As described above, storing the log requires simple, append-only storage lin-
ear in the total log size, and serving or accessing the log requires network traf-
fic only logarithmic in the total log size. This would be a completely reason-
able place to stop (and is where Certificate Transparency as defined in RFC 6962
stops). However, one useful optimization can both cut the hash storage in half
and make the network traffic more cache-friendly, with only a minor increase
in implementation complexity. That optimization is based on splitting the hash
tree into tiles, like Google Maps splits the globe into tiles.

A binary tree can be split into tiles of fixed height H and width 2H. For exam-
ple, here is the permanent hash tree for the log with 27 records, split into tiles
of height 2:

tile(0, 0) tile(0, 1) tile(0, 2) tile(0, 3) tile(0, 4) tile(0, 5) tile(0, 6)/3

tile(1, 0) tile(1, 1)/2

tile(2, 0)/1

level 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

level 1 0 1 2 3 4 5 6 7 8 9 10 11 12

level 2 0 1 2 3 4 5

level 3 0 1 2

level 4 0

We can assign each tile a two-dimensional coordinate, analogous to the hash co-
ordinates we’ve been using: tile(L, K) denotes the tile at tile level L (hash levels
H·L up to H·(L+1)), Kth from the left. For any given log size, the rightmost tile
at each level may not yet be complete: the bottom row of hashes may contain
only W < 2H hashes. In that case we will write tile(L, K)/W. (When the tile is
complete, the “/W” is omitted, understood to be 2H.)

Storing Tiles

Only the bottom row of each tile needs to be stored: the upper rows can be re-
computed by hashing lower ones. In our example, a tile of height two stores 4
hashes instead of 6, a 33% storage reduction. For tiles of greater heights, the
storage reduction asymptotically approaches 50%. The cost is that reading a
hash that has been optimized away may require reading as much as half a tile,
increasing I/O requirements. For a real system, height four seems like a rea-
sonable balance between storage costs and increased I/O overhead. It stores 16
hashes instead of 30—a 47% storage reduction—and (assuming SHA-256) a sin-
gle 16-hash tile is only 512 bytes (a single disk sector!).

The file storage described earlier maintained lg N hash files, one for each lev-
el. Using tiled storage, we only write the hash files for levels that are a multiple
of the tile height. For tiles of height 4, we’d only write the hash files for levels 0,
4, 8, 12, 16, and so on. When we need a hash at another level, we can read its
tile and recompute the hash.

Serving Tiles

The proof-serving requests RecordProof(R, N) and TreeProof(N, N ′) are not par-
ticularly cache-friendly. For example, although RecordProof(R, N) often shares
many hashes with both RecordProof(R+1, N) and RecordProof(R, N+1), the three
are distinct requests that must be cached independently.

A more cache-friendly approach would be to replace RecordProof and Tree-
Proof by a general request Hash(L, K), serving a single permanent hash. The



https://tools.ietf.org/html/rfc6962
https://medium.com/google-design/google-maps-cb0326d165f5#ccfa

T L  S C

client can easily compute which specific hashes it needs, and there are many
fewer individual hashes than whole proofs (2 N vs N2/2), which will help the
cache hit rate. Unfortunately, switching to Hash requests is inefficient: obtaining
a record proof used to take one request and now takes up to 2 lg N requests,
while tree proofs take up to 3 lg N requests. Also, each request delivers only a
single hash (32 bytes): the request overhead is likely significantly larger than the
payload.

We can stay cache-friendly while reducing the number of requests and the
relative request overhead, at a small cost in bandwidth, by adding a request
Tile(L, K) that returns the requested tile. The client can request the tiles it needs
for a given proof, and it can cache tiles, especially those higher in the tree, for
use in future proofs.

For a real system using SHA-256, a tile of height 8 would be 8 kB. A typical
proof in a large log of, say, 100 million records would require only three com-
plete tiles, or 24 kB downloaded, plus one incomplete tile (192 bytes) for the
top of the tree. And tiles of height 8 can be served directly from stored tiles of
height 4 (the size suggested in the previous section). Another reasonable choice
would be to both store and serve tiles of height 6 (2 kB each) or 7 (4 kB each).

If there are caches in front of the server, each differently-sized partial tile
must be given a different name, so that a client that needs a larger partial tile is
not given a stale smaller one. Even though the tile height is conceptually con-
stant for a given system, it is probably helpful to be explicit about the tile height
in the request, so that a system can transition from one fixed tile height to an-
other without ambiguity. For example, in a simple GET-based HTTP API, we
could use /tile/H/L/K to name a complete tile and /tile/H/L/K.W to name
a partial tile with only W hashes.

Authenticating Tiles

One potential problem with downloading and caching tiles is not being sure
that they are correct. An attacker might be able to modify downloaded tiles and
cause proofs to fail unexpectedly. We can avoid this problem by authenticating
the tiles against the signed top-level tree hash after downloading them. Specif-
ically, if we have a signed top-level tree hash T, we first download the at most
(lg N)/H tiles storing the hashes for the complete subtrees that make up T. In
the diagram of T₂₇ earlier, that would be tile(2, 0)/1, tile(1, 1)/2, and tile(0, 6)/3.
Computing T will use every hash in these tiles; if we get the right T, the hash-
es are all correct. These tiles make up the top and right sides of the tile tree for
the given hash tree, and now we know they are correct. To authenticate any oth-
er tile, we first authenticate its parent tile (the topmost parents are all authen-
ticated already) and then check that the result of hashing all the hashes in the
tile produces the corresponding entry in the parent tile. Using the T₂₇ example
again, given a downloaded tile purporting to be tile(0, 1), we can compute

h(2, 1) = H(H(h(0, 4), h(0, 5)), H(h(0, 6), h(0, 7)))

and check whether that value matches the h(2, 1) recorded directly in an al-
ready-authenticated tile(1, 0). If so, that authenticates the downloaded tile.



T L  S C

Summary

Putting this all together, we’ve seen how to publish a transparent (tamper-evi-
dent, immutable, append-only) log with the following properties:

– A client can verify any particular record using O(lg N) downloaded
bytes.

– A client can verify any new log contains an older log using O(lg N)
downloaded bytes.

– For even a large log, these verifications can be done in 3 RPCs of
about 8 kB each.

– The RPCs used for verification can be made to proxy and cache well,
whether for network efficiency or possibly for privacy.

– Auditors can iterate over the entire log looking for bad entries.

– Writing N records defines a sequence of N hash trees, in which the nth
tree contains 2 n – 1 hashes, a total of N2 hashes. But instead of need-
ing to store N2 hashes, the entire sequence can be compacted into at
most 2 N hashes, with at most lg N reads required to reconstruct a spe-
cific hash from a specific tree.

– Those 2 N hashes can themselves be compacted down to 1.06 N hash-
es, at a cost of potentially reading 8 adjacent hashes to reconstruct any
one hash from the 2 N.

Overall, this structure makes the log server itself essentially untrusted. It can’t
remove an observed record without detection. It can’t lie to one client with-
out keeping the client on an alternate timeline forever, making detection easy
by comparing against another client. The log itself is also easily proxied and
cached, so that even if the main server disappeared, replicas could keep serving
the cached log. Finally, auditors can check the log for entries that should not be
there, so that the actual content of the log can be verified asynchronously from
its use.

Further Reading

The original sources needed to understand this data structure are all quite read-
able and repay careful study. Ralph Merkle introduced Merkle trees in his Ph.D.
thesis, “Secrecy, authentication, and public-key systems” (1979), using them to
convert a digital signature scheme with single-use public keys into one with
multiple-use keys. The multiple-use key was the top-level hash of a tree of 2L

pseudorandomly generated single-use keys. Each signature began with a specif-
ic single-use key, its index K in the tree, and a proof (consisting of L hashes)
authenticating the key as record K in the tree. Adam Langley’s blog post “Hash
based signatures” (2013) gives a short introduction to the single-use signature
scheme and how Merkle’s tree helped.

Scott Crosby and Dan Wallach introduced the idea of using a Merkle tree to
store a verifiably append-only log in their paper, “Efficient Data Structures for
Tamper-Evident Logging” (2009). The key advance was the efficient proof that
one tree’s log is contained as a prefix of a larger tree’s log.

Ben Laurie, Adam Langley, and Emilia Kasper adopted this verifiable, trans-
parent log in the design for Certificate Transparency (CT) system (2012), de-
tailed in RFC 6962 (2013). CT’s computation of the top-level hashes for non-
power-of-two-sized logs differs in minor ways from Crosby and Wallach’s paper;
this post used the CT definitions. Ben Laurie’s ACM Queue article, “Certificate
Transparency: Public, verifiable, append-only logs” (2014), presents a high-level



http://www.merkle.com/papers/Thesis1979.pdf
https://www.imperialviolet.org/2013/07/18/hashsig.html
http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc6962
https://queue.acm.org/detail.cfm?id=2668154

T L  S C

overview and additional motivation and context.
Adam Eijdenberg, Ben Laurie, and Al Cutter’s paper “Verifiable Data Struc-

tures” (2015), presents Certificate Transparency’s log as a general building
block—a transparent log—for use in a variety of systems. It also introduces an
analogous transparent map from arbitrary keys to arbitrary values, perhaps a
topic for a future post.

Google’s “General Transparency” server, Trillian, is a production-quality stor-
age implementation for both transparent logs and transparent maps. The RPC
service serves proofs, not hashes or tiles, but the server uses tiles in its internal
storage.

To authenticate modules (software packages) in the Go language ecosystem,
we are planning to use a transparent log to store the expected cryptographic
hashes of specific module versions, so that a client can be cryptographically cer-
tain that it will download the same software tomorrow that it downloaded to-
day. For that system’s network service, we plan to serve tiles directly, not proofs.
This post effectively serves as an extended explanation of the transparent log,
for reference from the Go-specific design.

Appendix A: Postorder Storage Layout

The file-based storage described earlier held the permanent hash tree in lg N ap-
pend-only files, one for each level of the tree. The hash h(L, K) would be stored
in the Lth hash file at offset K · HashSize

Crosby and Wallach pointed out that it is easy to merge the lg N hash tree
levels into a single, append-only hash file by using the postorder numbering of
the binary tree, in which a parent hash is stored immediately after its rightmost
child. For example, the permanent hash tree after writing N = 13 records is laid
out like:

level 0 0 1 3 4 7 8 1011 15 16 1819 22

level 1 2 5 9 12 17 20

level 2 6 13 21

level 3 14

In the diagram, each hash is numbered and aligned horizontally according to its
location in the interlaced file.

The postorder numbering makes the hash file append-only: each new record
completes between 1 and lg N new hashes (on average 2), which are simply ap-
pended to the file, lower levels first.

Reading a specific hash from the file can still be done with a single read at
a computable offset, but the calculation is no longer completely trivial. Hashes
at level 0 are placed by adding in gaps for completed higher-level hashes, and a
hash at any higher level immediately follows its right child hash:

seq(0, K) = K + K/2 + K/4 + K/8 + ...
seq(L, K) = seq(L–1, 2 K + 1) + 1 = seq(0, 2L (K+1) – 1) + L

The interlaced layout also improves locality of access. Reading a proof typically
means reading one hash from each level, all clustered around a particular leaf
in the tree. If each tree level is stored separately, each hash is in a different file
and there is no possibility of I/O overlap. But when the tree is stored in inter-
laced form, the accesses at the bottom levels will all be near each other, making
it possible to fetch many of the needed hashes with a single disk read.



https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/README.md
https://github.com/google/trillian/blob/master/docs/storage/storage.md
https://blog.golang.org/modules2019
https://golang.org/design/25530-notary

T L  S C

Appendix B: Inorder Storage Layout

A different way to interlace the lg N hash files would be to use an inorder tree
numbering, in which each parent hash is stored between its left and right sub-
trees:

level 0 0 2 4 6 8 10 12 14 16 18 20 22 24

level 1 1 5 9 13 17 21

level 2 3 11 19

level 3 7

This storage order does not correspond to append-only writes to the file, but
each hash entry is still write-once. For example, with 13 records written, as in
the diagram, hashes have been stored at indexes 0–14, 16–22 and 24, but not yet
at indexes 15 and 23, which will eventually hold h(4, 0) and h(3, 1). In effect, the
space for a parent hash is reserved when its left subtree has been completed, but
it can only be filled in later, once its right subtree has also been completed.

Although the file is no longer append-only, the inorder numbering has other
useful properties. First, the offset math is simpler:

seq(0, K) = 2 K
seq(L, K) = 2L+1 K + 2L – 1

Second, locality is improved. Now each parent hash sits exactly in the middle of
its child subtrees, instead of on the far right side.

Appendix C: Tile Storage Layout

Storing the hash tree in lg N separate levels made converting to tile storage very
simple: just don’t write (H–1)/H of the files. The simplest tile implementation is
probably to use separate files, but it is worth examining what it would take to
convert an interlaced hash storage file to tile storage. It’s not as straightforward
as omitting a few files. It’s not enough to just omit the hashes at certain levels:
we also want each tile to appear contiguously in the file. For example, for tiles
of height 2, the first tile at tile level 1 stores hashes h(2, 0)–h(2, 3), but neither
the postorder nor inorder interlacing would place those four hashes next to each
other.

Instead, we must simply define that tiles are stored contiguously and then de-
cide a linear tile layout order. For tiles of height 2, the tiles form a 4-ary tree,
and in general, the tiles form a 2H-ary tree. We could use a postorder layout, as
in Appendix A:

seq(0, K) = K + K/2H + K/22H + K/23H + ...
seq(L, K) = seq(L–1, 2H K + 2H – 1) + 1 = seq(0, 2H·L (K+1) – 1) + L

The postorder tile sequence places a parent tile immediately after its rightmost
child tile, but the parent tile begins to be written after the leftmost child tile is
completed. This means writing increasingly far ahead of the filled part of the
hash file. For example, with tiles of height 2, the first hash of tile(2, 0) (pos-
torder index 20) is written after filling tile(1, 0) (postorder index 4):

20

4

0 1 2 3

9

5 6 7 8

14

10 11 12 13

19

15 16 17 18



T L  S C

The hash file catches up—there are no tiles written after index 20 until the
hash file fills in entirely behind it—but then jumps ahead again—finishing tile
20 triggers writing the first hash into tile 84. In general only the first 1/2H or
so of the hash file is guaranteed to be densely packed. Most file systems effi-
ciently support files with large holes, but not all do: we may want to use a dif-
ferent tile layout to avoid arbitrarily large holes.

Placing a parent tile immediately after its leftmost child’s completed subtree
would eliminate all holes (other than incomplete tiles) and would seem to cor-
respond to the inorder layout of Appendix B:

5

1

0 2 3 4

7

6 8 9 10

12

11 13 14 15

17

16 18 19 20

But while the tree structure is regular, the numbering is not. Instead, the offset
math is more like the postorder traversal. A simpler but far less obvious alter-
native is to vary the exact placement of the parent tiles relative to the subtrees:

5

1

0 2 3 4

9

6 7 8 10

13

11 12 14 15

17

16 18 19 20

seq(L, K) = ((K + B – 2)/(B – 1))
B

|| (1)
B

L

Here, (X)
B

means X written as a base-B number, || denotes concatenation
of base-B numbers, (1)

B
L means the base-B digit 1 repeated L times, and

the base is B = 2H.
This encoding generalizes the inorder binary-tree traversal (H = 1, B =

2), preserving its regular offset math at the cost of losing its regular tree
structure. Since we only care about doing the math, not exactly what the
tree looks like, this is probably a reasonable tradeoff. For more about this
surprising ordering, see my blog post, “An Encoded Tree Traversal.”



https://research.swtch.com/treenum

