
C and C++ Prioritize Performance over Correctness

Russ Cox
August 18, 2023

research.swtch.com/ub

The original ANSI C standard, C89, introduced the concept of “undefined be-
havior,” which was used both to describe the effect of outright bugs like access-
ing memory in a freed object and also to capture the fact that existing imple-
mentations differed about handling certain aspects of the language, including
use of uninitialized values, signed integer overflow, and null pointer handling.

The C89 spec defined undefined behavior (in section 1.6) as:

Undefined behavior—behavior, upon use of a nonportable or erro-
neous program construct, of erroneous data, or of indeterminately-
valued objects, for which the Standard imposes no requirements. Per-
missible undefined behavior ranges from ignoring the situation com-
pletely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the en-
vironment (with or without the issuance of a diagnostic message), to
terminating a translation or execution (with the issuance of a diagnos-
tic message).

Lumping both non-portable and buggy code into the same category was a mis-
take. As time has gone on, the way compilers treat undefined behavior has led
to more and more unexpectedly broken programs, to the point where it is be-
coming difficult to tell whether any program will compile to the meaning in the
original source. This post looks at a few examples and then tries to make some
general observations. In particular, today’s C and C++ prioritize performance to
the clear detriment of correctness.

Uninitialized variables

C and C++ do not require variables to be initialized on declaration (explicitly
or implicitly) like Go and Java. Reading from an uninitialized variable is unde-
fined behavior.

In a blog post*, Chris Lattner (creator of LLVM and Clang) explains the ra-
tionale:

Use of an uninitialized variable: This is commonly known as source
of problems in C programs and there are many tools to catch these:
from compiler warnings to static and dynamic analyzers. This im-
proves performance by not requiring that all variables be zero initial-
ized when they come into scope (as Java does). For most scalar vari-
ables, this would cause little overhead, but stack arrays and malloc’d
memory would incur a memset of the storage, which could be quite
costly, particularly since the storage is usually completely overwritten.

Early C compilers were too crude to detect use of uninitialized basic variables
like integers and pointers, but modern compilers are dramatically more sophis-
ticated. They could absolutely react in these cases by “terminating a translation
or execution (with the issuance of a diagnostic message),” which is to say report-
ing a compile error. Or, if they were worried about not rejecting old programs,
they could insert a zero initialization with, as Lattner admits, little overhead. But
they don’t do either of these. Instead, they just do whatever they feel like dur-
ing code generation.

https://research.swtch.com/ub
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

C C++ P P C

For example, here’s a simple C++ program with an uninitialized variable (a
bug):

#include <stdio.h>

int main() {

for(int i; i < 10; i++) {

printf("%d\n", i);

}

return 0;

}

If you compile this with clang++ -O1, it deletes the loop entirely: main contains
only the return 0. In effect, Clang has noticed the uninitialized variable and
chosen not to report the error to the user but instead to pretend i is always ini-
tialized above 10, making the loop disappear.

It is true that if you compile with -Wall, then Clang does report the use of
the uninitialized variable as a warning. This is why you should always build with
and fix warnings in C and C++ programs. But not all compiler-optimized un-
defined behaviors are reliably reported as warnings.

Arithmetic overflow

At the time C89 was standardized, there were still legacy ones’-complement
computers*, so ANSI C could not assume the now-standard two’s-comple-
ment representation for negative numbers. In two’s complement, an int8 −1 is
0b11111111; in ones’ complement that’s −0, while −1 is 0b11111110. This meant
that operations like signed integer overflow could not be defined, because

int8 127+1 = 0b01111111+1 = 0b10000000

is −127 in ones’ complement but −128 in two’s complement. That is, signed in-
teger overflow was non-portable. Declaring it undefined behavior let compilers
escalate the behavior from “non-portable”, with one of two clear meanings, to
whatever they feel like doing. For example, a common thing programmers ex-
pect is that you can test for signed integer overflow by checking whether the re-
sult is less than one of the operands, as in this program:

#include <stdio.h>

int f(int x) {

if(x+100 < x)

printf("overflow\n");

return x+100;

}

Clang optimizes away the if statement. The justification is that since signed in-
teger overflow is undefined behavior, the compiler can assume it never happens,
so x+100 must never be less than x. Ironically, this program would correctly de-
tect overflow on both ones’-complement and two’s-complement machines if the
compiler would actually emit the check.

In this case, clang++ -O1 -Wall prints no warning while it deletes the if

statement, and neither does g++, although I seem to remember it used to, per-
haps in subtly different situations or with different flags.

For C++20, the first version of proposal P0907* suggested standardizing that
signed integer overflow wraps in two’s complement. The original draft gave a
very clear statement of the history of the undefined behavior and the motiva-
tion for making a change:

https://en.wikipedia.org/wiki/Ones%27_complement
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r0.html

C C++ P P C

[C11] Integer types allows three representations for signed integral
types:

– Signed magnitude

– Ones’ complement

– Two’s complement

See §4 C Signed Integer Wording for full wording.
C++ inherits these three signed integer representations from C. To the

author’s knowledge no modern machine uses both C++ and a signed inte-
ger representation other than two’s complement (see §5 Survey of Signed
Integer Representations). None of [MSVC], [GCC], and [LLVM] support
other representations. This means that the C++ that is taught is effective-
ly two’s complement, and the C++ that is written is two’s complement. It is
extremely unlikely that there exist any significant code base developed for
two’s complement machines that would actually work when run on a non-
two’s complement machine.

The C++ that is spec’d, however, is not two’s complement. Signed integers
currently allow for trap representations, extra padding bits, integral nega-
tive zero, and introduce undefined behavior and implementation-defined
behavior for the sake of this extremely abstract machine.

Specifically, the current wording has the following effects:

– Associativity and commutativity of integers is needlessly obtuse.

– Naïve overflow checks, which are often security-critical, often get
eliminated by compilers. This leads to exploitable code when the
intent was clearly not to and the code, while naïve, was correct-
ly performing security checks for two’s complement integers. Cor-
rect overflow checks are difficult to write and equally difficult to
read, exponentially so in generic code.

– Conversion between signed and unsigned are implementation-
defined.

– There is no portable way to generate an arithmetic right-shift, or
to sign-extend an integer, which every modern CPU supports.

– constexpr is further restrained by this extraneous undefined be-
havior.

– Atomic integral are already two’s complement and have no un-
defined results, therefore even freestanding implementations al-
ready support two’s complement in C++.

Let’s stop pretending that the C++ abstract machine should represent in-
tegers as signed magnitude or ones’ complement. These theoretical imple-
mentations are a different programming language, not our real-world C++.
Users of C++ who require signed magnitude or ones’ complement integers
would be better served by a pure-library solution, and so would the rest of
us.

In the end, the C++ standards committee put up “strong resistance against” the
idea of defining signed integer overflow the way every programmer expects; the
undefined behavior remains.

C C++ P P C

Infinite loops

A programmer would never accidentally cause a program to execute an infinite
loop, would they? Consider this program:

#include <stdio.h>

int stop = 1;

void maybeStop() {

if(stop)

for(;;);

}

int main() {

printf("hello, ");

maybeStop();

printf("world\n");

}

This seems like a completely reasonable program to write. Perhaps you are de-
bugging and want the program to stop so you can attach a debugger. Changing
the initializer for stop to 0 lets the program run to completion. But it turns out
that, at least with the latest Clang, the program runs to completion anyway: the
call to maybeStop is optimized away entirely, even when stop is 1.

The problem is that C++ defines that every side-effect-free loop may be as-
sumed by the compiler to terminate. That is, a loop that does not terminate
is therefore undefined behavior. This is purely for compiler optimizations, once
again treated as more important than correctness. The rationale for this decision
played out in the C standard and was more or less adopted in the C++ standard
as well.

John Regehr pointed out this problem in his post “C Compilers Disprove Fer-
mat’s Last Theorem*,” which included this entry in a FAQ:

Q: Does the C standard permit/forbid the compiler to terminate infi-
nite loops?

A: The compiler is given considerable freedom in how it imple-
ments the C program, but its output must have the same externally
visible behavior that the program would have when interpreted by the
“C abstract machine” that is described in the standard. Many knowl-
edgeable people (including me) read this as saying that the termina-
tion behavior of a program must not be changed. Obviously some
compiler writers disagree, or else don’t believe that it matters. The fact
that reasonable people disagree on the interpretation would seem to
indicate that the C standard is flawed.

A few months later, Douglas Walls wrote WG14/N1509: Optimizing away infi-
nite loops*, making the case that the standard should not allow this optimiza-
tion. In response, Hans-J. Boehm wrote WG14/N1528: Why undefined behavior
for infinite loops?*, arguing for allowing the optimization.

Consider the potential optimization of this code:

for (p = q; p != 0; p = p->next)

++count;

for (p = q; p != 0; p = p->next)

++count2;

https://blog.regehr.org/archives/140
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1509.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1528.htm

C C++ P P C

A sufficiently smart compiler might reduce it to this code:

for (p = q; p != 0; p = p->next) {

++count;

++count2;

}

Is that safe? Not if the first loop is an infinite loop. If the list at p is cyclic and
another thread is modifying count2, then the first program has no race, while
the second program does. Compilers clearly can’t turn correct, race-free pro-
grams into racy programs. But what if we declare that infinite loops are not cor-
rect programs? That is, what if infinite loops were undefined behavior? Then the
compiler could optimize to its robotic heart’s content. This is exactly what the
C standards committee decided to do.

The rationale, paraphrased, was:

– It is very difficult to tell if a given loop is infinite.

– Infinite loops are rare and typically unintentional.

– There are many loop optimizations that are only valid for non-infinite
loops.

– The performance wins of these optimizations are deemed important.

– Some compilers already apply these optimizations, making infinite
loops non-portable too.

– Therefore, we should declare programs with infinite loops undefined
behavior, enabling the optimizations.

Null pointer usage

We’ve all seen how dereferencing a null pointer causes a crash on modern oper-
ating systems: they leave page zero unmapped by default precisely for this pur-
pose. But not all systems where C and C++ run have hardware memory protec-
tion. For example, I wrote my first C and C++ programs using Turbo C on an
MS-DOS system. Reading or writing a null pointer did not cause any kind of
fault: the program just touched the memory at location zero and kept running.
The correctness of my code improved dramatically when I moved to a Unix sys-
tem that made those programs crash at the moment of the mistake. Because the
behavior is non-portable, though, dereferencing a null pointer is undefined be-
havior.

At some point, the justification for keeping the undefined behavior became
performance. Chris Lattner explains*:

In C-based languages, NULL being undefined enables a large number
of simple scalar optimizations that are exposed as a result of macro
expansion and inlining.

In an earlier post*, I showed this example, lifted from Twitter in 2017*:

#include <cstdlib>

typedef int (*Function)();

static Function Do;

static int EraseAll() {

return system("rm -rf slash");

}

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
plmm#ub
https://twitter.com/andywingo/status/903577501745770496

C C++ P P C

void NeverCalled() {

Do = EraseAll;

}

int main() {

return Do();

}

Because calling Do() is undefined behavior when Do is null, a modern C++
compiler like Clang simply assumes that can’t possibly be what’s happening in
main. Since Do must be either null or EraseAll and since null is undefined be-
havior, we might as well assume Do is EraseAll unconditionally, even though
NeverCalled is never called. So this program can be (and is) optimized to:

int main() {

return system("rm -rf slash");

}

Lattner gives an equivalent example* (search for FP()) and then this advice:

The upshot is that it is a fixable issue: if you suspect something weird
is going on like this, try building at -O0, where the compiler is much
less likely to be doing any optimizations at all.

This advice is not uncommon: if you cannot debug the correctness problems in
your C++ program, disable optimizations.

Crashes out of sorts

C++’s std::sort sorts a collection of values (abstracted as a random access
iterator, but almost always an array) according to a user-specified comparison
function. The default function is operator<, but you can write any function.
For example if you were sorting instances of class Person your comparison
function might sort by the LastName field, breaking ties with the FirstName

field. These comparison functions end up being subtle yet boring to write, and
it’s easy to make a mistake. If you do make a mistake and pass in a comparison
function that returns inconsistent results or accidentally reports that any value is
less than itself, that’s undefined behavior: std::sort is now allowed to do what-
ever it likes, including walking off either end of the array and corrupting oth-
er memory. If you’re lucky, it will pass some of this memory to your compari-
son function, and since it won’t have pointers in the right places, your compar-
ison function will crash. Then at least you have a chance of guessing the com-
parison function is at fault. In the worst case, memory is silently corrupted and
the crash happens much later, with std::sort is nowhere to be found.

Programmers make mistakes, and when they do, std::sort corupts memo-
ry. This is not hypothetical. It happens enough in practice to be a popular ques-
tion on StackOverflow*.

As a final note, it turns out that operator< is not a valid comparison func-
tion on floating-point numbers if NaNs are involved, because:

– 1 < NaN and NaN < 1 are both false, implying NaN == 1.

– 2 < NaN and NaN < 2 are both false, implying NaN == 2.

– Since NaN == 1 and NaN == 2, 1 == 2, yet 1 < 2 is true.

Programming with NaNs is never pleasant, but it seems particularly extreme to
allow std::sort to crash when handed one.

https://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
https://stackoverflow.com/questions/18291620/why-will-stdsort-crash-if-the-comparison-function-is-not-as-operator

C C++ P P C

Reflections and revealed preferences

Looking over these examples, it could not be more obvious that in modern C
and C++, performance is job one and correctness is job two. To a C/C++ com-
piler, a programmer making a mistake and (gasp!) compiling a program contain-
ing a bug is just not a concern. Rather than have the compiler point out the bug
or at least compile the code in a clear, understandable, debuggable manner, the
approach over and over again is to let the compiler do whatever it likes, in the
name of performance.

This may not be the wrong decision for these languages. There are undeni-
ably power users for whom every last bit of performance translates to very large
sums of money, and I don’t claim to know how to satisfy them otherwise. On
the other hand, this performance comes at a significant development cost, and
there are probably plenty of people and companies who spend more than their
performance savings on unnecessarily difficult debugging sessions and addition-
al testing and sanitizing. It also seems like there must be a middle ground where
programmers retain most of the control they have in C and C++ but the pro-
gram doesn’t crash when sorting NaNs or behave arbitrarily badly if you acci-
dentally dereference a null pointer. Whatever the merits, it is important to see
clearly the choice that C and C++ are making.

In the case of arithmetic overflow, later drafts of the proposal removed the de-
fined behavior for wrapping, explaining:

The main change between [P0907r0] and the subsequent revision is to
maintain undefined behavior when signed integer overflow occurs, in-
stead of defining wrapping behavior. This direction was motivated by:

– Performance concerns, whereby defining the behavior prevents
optimizers from assuming that overflow never occurs;

– Implementation leeway for tools such as sanitizers;

– Data from Google suggesting that over 90% of all overflow is a
bug, and defining wrapping behavior would not have solved the
bug.

Again, performance concerns rank first. I find the third item in the list particu-
larly telling. I’ve known C/C++ compiler authors who got excited about a 0.1%
performance improvement, and incredibly excited about 1%. Yet here we have
an idea that would change 10% of affected programs from incorrect to correct,
and it is rejected, because performance is more important.

The argument about sanitizers is more nuanced. Leaving a behavior unde-
fined allows any implementation at all, including reporting the behavior at run-
time and stopping the program. True, the widespread use of undefined behav-
ior enables sanitizers like ThreadSanitizer, MemorySanitizer, and UBSan, but so
would defining the behavior as “either this specific behavior, or a sanitizer re-
port.” If you believed correctness was job one, you could define overflow to
wrap, fixing the 10% of programs outright and making the 90% behave at least
more predictably, and then at the same time define that overflow is still a bug
that can be reported by sanitizers. You might object that requiring wrapping in
the absence of a sanitizer would hurt performance, and that’s fine: it’s just more
evidence that performance trumps correctness.

One thing I find surprising, though, is that correctness gets ignored even
when it clearly doesn’t hurt performance. It would certainly not hurt perfor-
mance to emit a compiler warning about deleting the if statement testing for
signed overflow, or about optimizing away the possible null pointer dereference
in Do(). Yet I could find no way to make compilers report either one; certainly

C C++ P P C

not -Wall.
The explanatory shift from non-portable to optimizable also seems revealing.

As far as I can tell, C89 did not use performance as a justification for any of its
undefined behaviors. They were non-portabilities, like signed overflow and null
pointer dereferences, or they were outright bugs, like use-after-free. But now ex-
perts like Chris Lattner and Hans Boehm point to optimization potential, not
portability, as justification for undefined behaviors. I conclude that the ratio-
nales really have shifted from the mid-1980s to today: an idea that meant to
capture non-portability has been preserved for performance, trumping concerns
like correctness and debuggability.

Occasionally in Go we have changed library functions to remove surprising
behavior*, It’s always a difficult decision, but we are willing to break existing
programs depending on a mistake if correcting the mistake fixes a much larg-
er number of programs. I find it striking that the C and C++ standards com-
mittees are willing in some cases to break existing programs if doing so merely
speeds up a large number of programs. This is exactly what happened with the
infinite loops.

I find the infinite loop example telling for a second reason: it shows clearly the
escalation from non-portable to optimizable. In fact, it would appear that if you
want to break C++ programs in service of optimization, one possible approach
is to just do that in a compiler and wait for the standards committee to notice.
The de facto non-portability of whatever programs you have broken can then
serve as justification for undefining their behavior, leading to a future version of
the standard in which your optimization is legal. In the process, programmers
have been handed yet another footgun to try to avoid setting off.

(A common counterargument is that the standards committee cannot force
existing implementations to change their compilers. This doesn’t hold up to
scrutiny: every new feature that gets added is the standards committee forcing
existing implementations to change their compilers.)

I am not claiming that anything should change about C and C++. I just want
people to recognize that the current versions of these sacrifice correctness for
performance. To some extent, all languages do this: there is almost always a
tradeoff between performance and slower, safer implementations. Go has data
races in part for performance reasons: we could have done everything by mes-
sage copying or with a single global lock instead, but the performance wins of
shared memory were too large to pass up. For C and C++, though, it seems no
performance win is too small to trade against correctness.

As a programmer, you have a tradeoff to make too, and the language stan-
dards make it clear which side they are on. In some contexts, performance is the
dominant priority and nothing else matters quite as much. If so, C or C++ may
be the right tool for you. But in most contexts, the balance flips the other way. If
programmer productivity, debuggability, reproducible bugs, and overall correct-
ness and understandability are more important than squeezing every last little
bit of performance, then C and C++ are not the right tools for you. I say this
with some regret, as I spent many years happily writing C programs.

I have tried to avoid exaggerated, hyperbolic language in this post, instead
laying out the tradeoff and the preferences revealed by the decisions being made.
John Regehr wrote a less restrained series of posts about undefined behavior a
decade ago, and in one of them* he concluded:

It is basically evil to make certain program actions wrong, but to not
give developers any way to tell whether or not their code performs
these actions and, if so, where. One of C’s design points was “trust
the programmer.” This is fine, but there’s trust and then there’s trust. I
mean, I trust my 5 year old but I still don’t let him cross a busy street

https://go.dev/blog/compat#input
https://blog.regehr.org/archives/226

C C++ P P C

by himself. Creating a large piece of safety-critical or security-critical
code in C or C++ is the programming equivalent of crossing an 8-lane
freeway blindfolded.

To be fair to C and C++, if you set yourself the goal of crossing an 8-lane free-
way blindfolded, it does make sense to focus on doing it as fast as you possibly
can.

* Asterisks mark hyperlinked text.

