
The vgo proposal is accepted. Now what?
Go & Versioning, Part 8

Russ Cox
May 29, 2018

research.swtch.com/vgo-accepted

Last week, the proposal review committee accepted the “vgo approach” elaborat-
ed on this blog in February and then summarized as proposal #24301. There has
been some confusion about exactly what that means and what happens next.

In general, a Go proposal is a discussion about whether to adopt a particu-
lar approach and move on to writing, reviewing, and releasing a production im-
plementation. Accepting a proposal does not mean the implementation is com-
plete. (In some cases there is no implementation yet at all!) Accepting a propos-
al only means that we believe the design is appropriate and that the production
implementation can proceed and be committed and released. Inevitably we find
details that need adjustment during that process.

Vgo as it exists today is not the final implementation. It is a prototype to
make the ideas concrete and to make it possible to experiment with the ap-
proach. Bugs and design flaws will necessarily be found and fixed as we move
toward making it the official approach in the go command. For example, the
original vgo prototype downloaded code from sites like GitHub using their APIs,
for better efficiency and to avoid requiring users to have every possible version
control system installed. Unfortunately, the GitHub API is far more restrictively
rate-limited than plain git access, so the current vgo implementation has gone
back to invoking git. Although we’d still like to move away from version con-
trol as the default mechanism for obtaining open source code, we won’t do that
until we have a viable replacement ready, to make any transition as smooth as
possible.

More generally, the key reason for the vgo proposal is to add a common vo-
cabulary and semantics around versions of Go code, so that developers and all
kinds of tools can be precise when talking to each other about exactly which
program should be built, run, or analyzed. Accepting the proposal is the begin-
ning, not the end.

One thing I’ve heard from many people is that they want to start using vgo in
their company or project but are held back by not having support for it in the
toolchains their developers are using. The fact that vgo is integrated deeply into
the go command, instead of being a separate vendor directory-writer, introduces
a chicken-and-egg problem. To address that problem and make it as easy as pos-
sible for developers to try the vgo approach, we plan to include vgo functional-
ity as an experimental opt-in feature in Go 1.11, with the hope of incorporat-
ing feedback and finalizing the feature for Go 1.12. (This rollout is analogous to
how we included vendor directory functionality as an experimental opt-in fea-
ture in Go 1.5 and turned it on by default in Go 1.6.) We also plan to make min-
imal changes to legacy go get so that it can obtain and understand code writ-
ten using vgo conventions. Those changes will be included in the next point re-
lease for Go 1.9 and Go 1.10.

One thing I’ve heard from zero people is that they wish my blog posts were
longer. The original posts are quite dense and a number of important points are
more buried than they should be. This post is the first of a series of much short-
er posts to try to make focused points about specific details of the vgo design,
approach, and process.



vgo
https://research.swtch.com/vgo-accepted
https://golang.org/issue/24301
https://golang.org/s/proposal
https://blogs.msdn.microsoft.com/devops/2018/05/29/announcing-the-may-2018-git-security-vulnerability/
https://golang.org/issue/25069
https://research.swtch.com/vgo

