What is Software Engineering?
Go & Versioning, Part 9

Russ Cox
May 30, 2018

research.swich.com/vgo-eng

Nearly all of Go's distinctive design decisions were aimed at making software
engineering simpler and easier. We've said this often. The canonical reference is
Rob Pike’s 2012 article, “Go at Google: Language Design in the Service of Soft-
ware Engineering” But what is software engineering?

Software engineering is what happens to programming
when you add time and other programmers.

Programming means getting a program working. You have a problem to solve,
you write some Go code, you run it, you get your answer, youre done. Thats
programming, and that’s difficult enough by itself. But what if that code has to
keep working, day after day? What if five other programmers need to work on
the code too? Then you start to think about version control systems, to track
how the code changes over time and to coordinate with the other programmers.
You add unit tests, to make sure bugs you fix are not reintroduced over time, not
by you six months from now, and not by that new team member who's unfamil-
iar with the code. You think about modularity and design patterns, to divide the
program into parts that team members can work on mostly independently. You
use tools to help you find bugs earlier. You look for ways to make programs as
clear as possible, so that bugs are less likely. You make sure that small changes
can be tested quickly, even in large programs. Youre doing all of this because
your programming has turned into software engineering.

(This definition and explanation of software engineering is my riff on an orig-
inal theme by my Google colleague Titus Winters, whose preferred phrasing is
“software engineering is programming integrated over time” Its worth seven
minutes of your time to see his presentation of this idea at CppCon 2017, from
8:17 to 15:00 in the video.)

As 1 said earlier, nearly all of Go’s distinctive design decisions have been mo-
tivated by concerns about software engineering, by trying to accommodate time
and other programmers into the daily practice of programming.

For example, most people think that we format Go code with gofmt to make
code look nicer or to end debates among team members about program layout.
But the most important reason for gofmt is that if an algorithm defines how
Go source code is formatted, then programs, like goimports or gorename or go
fix, can edit the source code more easily, without introducing spurious format-
ting changes when writing the code back. This helps you maintain code over
time.

As another example, Go import paths are URLs. If code said import
"uuid", youd have to ask which uuid package. Searching for uuid on
godoc.org turns up dozens of packages. If instead the code says import
"github.com/pborman/uuid", now it’s clear which package we mean. Using
URLs avoids ambiguity and also reuses an existing mechanism for giving out
names, making it simpler and easier to coordinate with other programmers.

Continuing the example, Go import paths are written in Go source files, not
in a separate build configuration file. This makes Go source files self-contained,
which makes it easier to understand, modify, and copy them. These decisions,
and more, were all made with the goal of simplifying software engineering.

In later posts I will talk specifically about why versions are important for soft-



vgo
https://research.swtch.com/vgo-eng
https://talks.golang.org/2012/splash.article
https://www.youtube.com/watch?v=tISy7EJQPzI&t=8m17s
https://groups.google.com/forum/#!msg/golang-nuts/HC2sDhrZW5Y/7iuKxdbLExkJ
https://godoc.org

WHAT 1S SOFTWARE ENGINEERING?

ware engineering and how software engineering concerns motivate the design
changes from dep to vgo.



