
Defining Go Modules
Go & Versioning, Part 6

Russ Cox
February 22, 2018

research.swtch.com/vgo-module

As introduced in the overview post, a Go module is a collection of packages ver-
sioned as a unit, along with a go.mod file listing other required modules. The
move to modules is an opportunity for us to revisit and fix many details of how
the go command manages source code. The current go get model will be about
ten years old when we retire it in favor of modules. We need to make sure that
the module design will serve us well for the next decade. In particular:

– We want to encourage more developers to tag releases of their pack-
ages, instead of expecting that users will just pick a commit hash that
looks good to them. Tagging explicit releases makes clear what is ex-
pected to be useful to others and what is still under development. At
the same time, it must still be possible—although maybe not conve-
nient—to request specific commits.

– We want to move away from invoking version control tools such as
bzr, fossil, git, hg, and svn to download source code. These frag-
ment the ecosystem: packages developed using Bazaar or Fossil, for ex-
ample, are effectively unavailable to users who cannot or choose not
to install these tools. The version control tools have also been a source
of exciting security problems. It would be good to move them outside
the security perimeter.

– We want to allow multiple modules to be developed in a single source
code repository but versioned independently. While most developers
will likely keep working with one module per repo, larger projects
might benefit from having multiple modules in a single repo. For ex-
ample, we’d like to keep golang.org/x/text a single repository but
be able to version experimental new packages separately from estab-
lished packages.

– We want to make it easy for individuals and companies to put caching
proxies in front of go get downloads, whether for availability (use a
local copy to ensure the download works tomorrow) or security (vet
packages before they can be used inside a company).

– We want to make it possible, at some future point, to introduce a
shared proxy for use by the Go community, similar in spirit to those
used by Rust, Node, and other languages. At the same time, the design
must work well without assuming such a proxy or registry.

– We want to eliminate vendor directories. They were introduced for re-
producibility and availability, but we now have better mechanisms. Re-
producibility is handled by proper versioning, and availability is han-
dled by caching proxies.

This post presents the parts of the vgo design that address these issues. Every-
thing here is preliminary: we will change the design if we find that it is not right.

vgo
https://research.swtch.com/vgo-module
vgo-intro
https://golang.org/issue/22131
https://www.mercurial-scm.org/wiki/WhatsNew/Archive#Mercurial_3.2.3_.282014-12-18.29
https://git-blame.blogspot.com/2014/12/git-1856-195-205-214-and-221-and.html

D G M

Versioned Releases

Abstraction boundaries let projects scale. Originally, all Go packages could be
imported by all other Go packages. We introduced the internal directory con-
vention in Go 1.4 to eliminate the problem that developers who chose to struc-
ture a program as multiple packages had to worry about other users importing
and depending on details of helper packages never meant for public use.

The Go community has a similar visibility problem now with repository com-
mits. Today, it’s very common for users to identify package versions by com-
mit identifiers (usually Git hashes), with the result that developers who structure
work as a sequence of commits need to worry, at least in the back of their mind,
about users pinning to any of those commits, which again were never meant for
public use. We need to change the expectations in the Go open source commu-
nity, to establish a norm that authors tag releases and users prefer those.

I don’t think this point, that users should be choosing from versions issued by
authors instead of picking out individual commits from the Git history, is par-
ticularly controversial. The difficult part is shifting the norm. We need to make
it easy for authors to tag commits and easy for users to use those tags.

The most common way authors share code today is on code hosting sites, es-
pecially GitHub. For code on GitHub, all authors will need to do is tag a com-
mit and push the tag. We also plan to provide a tool, maybe called go release,
to compare different versions of a module for API compatibility at the type lev-
el, to catch inadvertent breaking changes that are visible in the type system, and
also to help authors decide between issuing should be a minor release (because
it adds new API or changes many lines of code) or only a patch release.

For users, vgo itself operates entirely in terms of tagged versions. However, we
know that at least during the transition from old practices to new, and perhaps
indefinitely as a way to bootstrap new projects, an escape hatch will be neces-
sary, to allow specifying a commit. This is possible in vgo, but it has been de-
signed so as to make users prefer explicitly tagged versions.

Specifically, vgo understands the special pseudo-version v0.0.0-yyyymmd-
dhhmmss-commit as referring to the given commit identifier, which is typically
a shortened Git hash and which must have a commit time matching the (UTC)
timestamp. This form is a valid semantic version string for a prerelease of v0.0.0.
For example, this pair of Gopkg.toml stanzas:

[[projects]]

name = "google.golang.org/appengine"

packages = [

"internal",

"internal/base",

"internal/datastore",

"internal/log",

"internal/remote_api",

"internal/urlfetch",

"urlfetch"

]

revision = "150dc57a1b433e64154302bdc40b6bb8aefa313a"

version = "v1.0.0"

[[projects]]

branch = "master"

name = "github.com/google/go-github"

packages = ["github"]

revision = "922ceac0585d40f97d283d921f872fc50480e06e"

https://golang.org/s/go14internal

D G M

correspond to these go.mod lines:

require (

"google.golang.org/appengine" v1.0.0

"github.com/google/go-github" v0.0.0-20180116225909-922ceac0585d

)

The pseudo-version form is chosen so that the standard semver precedence
rules compare two pseudo-versions by commit time, because the timestamp en-
coding makes string comparison match time comparison. The form also ensures
that vgo will always prefer a tagged semantic version over an untagged pseudo-
version, beacuse even if v0.0.1 is very old, it has a greater semver precedence
than any v0.0.0 prerelease. (Note also that this matches the choice made by dep

when adding a new dependency to a project.) And of course pseudo-version
strings are unwieldy: they stand out in go.mod files and vgo list -m output.
All these inconveniences help encourage authors and users to prefer explicitly
tagged versions, a bit like the extra step of having to write import "unsafe" en-
courages developers to prefer writing safe code.

The go.mod File

A module version is defined by a tree of source files. The go.mod file describes
the module and also indicates the root directory. When vgo is run in a directory,
it looks in the current directory and then successive parents to find the go.mod

marking the root.
The file format is line-oriented, with // comments only. Each line holds a sin-

gle directive, which is a single verb (module, require, exclude, or replace, as
defined by minimum version selection), followed by arguments:

module "my/thing"

require "other/thing" v1.0.2

require "new/thing" v2.3.4

exclude "old/thing" v1.2.3

replace "bad/thing" v1.4.5 => "good/thing" v1.4.5

The leading verb can be factored out of adjacent lines, leading to a block, like
in Go imports:

require (

"new/thing" v2.3.4

"old/thing" v1.2.3

)

My goals for the file format were that it be (1) clear and simple, (2) easy for
people to read, edit, manipulate, and diff, (3) easy for programs like vgo to read,
modify, and write back, preserving comments and general structure, and (4)
have room for limited future growth. I looked at JSON, TOML, XML, and YAML
but none of them seemed to have those four properties all at once. For example,
the approach used in Gopkg.toml above leads to three lines for each require-
ment, making them harder to skim, sort, and diff. Instead I designed a minimal
format reminiscent of the top of a Go program, but hopefully not close enough
to be confusing. I adapted an existing comment-friendly parser.

The eventual go command integration may change the file format, perhaps
even adopting a more standard framing, but for compatibility we will keep
the ability to read today’s go.mod files, just as vgo can also read require-
ment information from GLOCKFILE, Godeps/Godeps.json, Gopkg.lock, de-
pendencies.tsv, glide.lock, vendor.conf, vendor.yml, vendor/manifest,
and vendor/vendor.json files.

vgo-mvs

D G M

From Repository to Modules

Developers work in version control systems, and clearly vgo must make that
as easy as possible. It is not reasonable to expect developers to prepare module
archives themselves, for example. Instead, vgo makes it easy to export modules
directly from any version control repository following some basic, unobtrusive
conventions.

To start, it suffices to create a repository and tag a commit, using a semver-
formatted tag like v0.1.0. The leading v is required, and having three numbers
is also required. Although vgo itself accepts shorthands like v0.1 on the com-
mand line, the canonical form v0.1.0 must be used in repository tags, to avoid
ambiguity. Only the tag is required. In order to use commits made without use
of vgo, a go.mod file is not strictly required at this point. Creating new tagged
commits creates new module versions. Easy.

When developers reach v2, semantic import versioning means that a
/v2/ is added to the import path at the end of the module root prefix:
my/thing/v2/sub/pkg. There are good reasons for this convention, as de-
scribed in the earlier post, but it is still a departure from existing tools. Realiz-
ing this, vgo will not use any v2 or later tag in a source code repository without
first checking that it has a go.mod with a module path declaration ending in that
major version (for example, module "my/thing/v2"). Vgo uses that declaration
as evidence that the author is using semantic import versioning to name pack-
ages within that module. This is especially important for multi-package mod-
ules, since the import paths within the module must contain the /v2/ element
to avoid referring back to the v1 module.

We expect that most developers will prefer to follow the usual “major branch”
convention, in which different major versions live in different branches. In this
case, the root directory in a v2 branch would have a go.mod indicating v2, like
this:

commit 8cfd487c

f!!�

 $���

commit a143ac39

go.mod (module "my/thing")

foo/

 bar/

tag v1.0.0

tag v1.0.1

commit 6da069d3

go.mod (module "my/thing")

foo/

 bar/

tag v1.1.0

commit 6da069d3

go.mod (module "my/thing/v2")

foo/

 quux/

tag v2.0.0

v2 branch

master branch

commit 9a1956a7

go.mod (module "my/thing/v2")

foo/

 quux/

tag v2.0.1

Go module using major branches

This is roughly how most developers already work. In the picture, the v1.0.0 tag
points to a commit that predates vgo. It has no go.mod file at all, and that works
fine. In the commit tagged v1.0.1, the author has added a go.mod file that says
module "my/thing". After that commit, however, the author forks a new v2 de-
velopment branch. In addition to whatever code changes prompted v2 (includ-
ing the replacement of bar with quux), the go.mod in that new branch is up-
dated to say module "my/thing/v2". The branches can then proceed indepen-

vgo-import

D G M

dently. In truth, vgo really has no idea about branches. It just resolves the tag to
a commit and then looks at the go.mod file in the commit. Again, the go.mod

file is required for v2 and later so that vgo can use the module line as a sign that
the code has been written with semantic import versioning in mind, so the im-
ports in foo say my/thing/v2/foo/quux, not my/thing/foo/quux.

As an alternative, vgo also supports a “major subdirectory” convention, in
which major versions above v1 are developed in subdirectories:

commit 8cfd487c

 foo/

 bar/

commit a143ac39

 go.mod (module "my/thing")

 foo/

 bar/

tag v1.0.0

tag v1.0.1

commit 7b3a8357

 go.mod (module "my/thing")

 foo/

 bar/

 v2/

 go.mod (module "my/thing/v2")

 foo/

 quux/

tag v1.1.0

commit a1b117fe

 go.mod (module "my/thing")

 foo/

 bar/

 v2/

 go.mod (module "my/thing/v2")

 foo/

 quux/

tag v2.0.0

master branch

Go module using major subdirectories

commit daa11f07

 go.mod (module "my/thing")

 foo/

 bar/

 v2/

 go.mod (module "my/thing/v2")

 foo/

 quux/

tag v2.0.1

In this case, v2.0.0 is created not by forking the whole tree into a separate branch
but by copying it into a subdirectory. Again the go.mod must be updated to say
"my/thing/v2". Afterward, v1.x.x tags pointing at commits address the files in
the root directory, excluding v2/, while v2.x.x tags pointing at commits address
the files in the v2/ subdirectory only. The go.mod file lets vgo distinguishes the
two cases. It would also be meaningful to have a v1.x.x and a v2.x.x tag point-
ing at the same commit: they would address different subtrees of the commit.

We expect that developers may feel strongly about choosing one convention
or the other. Instead of taking sides, vgo supports both. Note that for major ver-
sions above v2, the major subdirectory approach may provide a more graceful
transition for users of go get. On the other hand, users of dep or vendoring
tools should be able to consume repositories using either convention. Certainly
we will make sure dep can.

D G M

Multiple-Module Repositories

Developers may also find it useful to maintain a collection of modules in a sin-
gle source code repository. We want vgo to support this possibility. In general,
there is already wide variation in how different developers, teams, projects, and
companies apply source control, and we do not believe it is productive to im-
pose a single mapping like “one repository equals one module” onto all devel-
opers. Having some flexibility here should also help vgo adapt as best practices
around souce control continue to change.

In the major subdirectory convention, v2/ contains the module
"my/thing/v2". A natural extension is to allow subdirectories not named for
major versions. For example, we could add a blue/ subdirectory that con-
tains the module "my/thing/blue", confirmed by a blue/go.mod file with that
module path. In this case, the source control commit tags addressing that mod-
ule would take the form blue/v1.x.x. Similarly, the tag blue/v2.x.x would
address the blue/v2/ subdirectory. The existence of the blue/go.mod file ex-
cludes the blue/ tree from the outer my/thing module.

In the Go project, we intend to explore using this convention to allow repos-
itories like golang.org/x/text to define multiple, independent modules. This
lets us retain the convenience of coarse-grained source control but still promote
different subtrees to v1 at different times.

Deprecated Versions

Authors also need to be able to deprecate a version, to indicate that it should
not be used anymore. This is not yet implemented in the vgo prototype, but one
way it could work would be to define that on code hosting sites, the existence of
a tag v1.0.0+deprecated (ideally pointing at the same commit as v1.0.0) would
indicate that the commit is deprecated. It is of course important not to remove
the tag entirely, because that will break builds. Deprecated modules would be
highlighted in some way in vgo list -m -u output (“show me my modules and
information about updates”), so that users would know to update.

Also, because programs will have access to their own module lists and ver-
sions at runtime, a program could also be configured to check its own module
versions against some chosen authority and self-report in some way when it is
running deprecated versions. Again, the details here are not worked out, but it’s
a good example of something that’s possible once developers and tools share a
vocabulary for describing versions.

Publishing

Given a source control repository, developers need to be able to publish it in a
form that vgo can consume. In the general case, we will provide a command
that authors run to turn their source control repositories into file trees that can
be served to vgo by any web server capable of serving static files. Similar to
current go get, vgo expects a page with a <meta> tag to help translate from
a module name to the tree of files for that module. For example, to look up
swtch.com/testmod, the vgo command fetches the usual page:

$ curl -sSL ’https://swtch.com/testmod?go-get=1’

<!DOCTYPE html>

<meta name="go-import" content="swtch.com/testmod mod https://storage.googleapis.com/gomodules/rs...Nothing to see here.

$

The mod server type indicates that modules are served in a file tree at that base
URL. The relevant files at storage.googleapis.com/gomodules/rsc in this simple
case are:

D G M

– .../swtch.com/testmod/@v/list

– .../swtch.com/testmod/@v/v1.0.0.info

– .../swtch.com/testmod/@v/v1.0.0.mod

– .../swtch.com/testmod/@v/v1.0.0.zip

The exact meaning of these URLs is discussed in the “Download Protocol” sec-
tion later in the post.

Code Hosting Sites

A huge amount of development happens on code hosting sites, and we want that
work to integrate into vgo as smoothly as possible. Instead of expecting devel-
opers to publish modules elsewhere, vgo will have support for reading the infor-
mation it needs from those sites directly, using their HTTP-based APIs. In gen-
eral, archive downloads can be significantly faster than the existing version con-
trol checkouts. For example, working on a laptop with a gigabit internet con-
nection, it takes 10 seconds to download the CockroachDB source tree as a zip
file from GitHub but almost four minutes to git clone it. Sites need only pro-
vide an archive of any form that can be fetched with a simple HTTP GET. Ger-
rit servers, for example, only support downloading gzipped tar files. Vgo trans-
lates downloaded archives into the standard form.

The initial prototype only includes support for GitHub and the Go project’s
Gerrit server, but we will add support for Bitbucket and other major hosting
sites too, before shipping anything in the main Go toolchain.

With the combination of the lightweight repository conventions, which most-
ly match what developers are already doing, and the support for known code
hosting sites, we expect that most open source activity will be unaffected by the
move to modules, other than simply adding a go.mod to each repository.

Companies taking advantage of old go get’s direct use of git and other
source control tools will need to adjust. Perhaps it would make sense to write a
proxy that serves the vgo expectations but using version control tools. Compa-
nies could then run one of those to produce an experience much like using the
open source hosting sites.

Module Archives

The mapping from repositories to modules is a bit complex, because the way de-
velopers use source control varies. The end goal is to map all that complexity
down into a common, single format for Go modules for use by proxies or oth-
er code consumers (for example, godoc.org or any code checking tools).

The standard format in the vgo prototype is zip archives in which all paths
begin with the module path and version. For example, after running vgo get of
rsc.io/quote v1.5.2, you can find the zip file in vgo’s download cache:

$ unzip -l $GOPATH/src/v/cache/rsc.io/quote/@v/v1.5.2.zip

1479 00-00-1980 00:00 rsc.io/quote@v1.5.2/LICENSE

131 00-00-1980 00:00 rsc.io/quote@v1.5.2/README.md

240 00-00-1980 00:00 rsc.io/quote@v1.5.2/buggy/buggy_test.go

55 00-00-1980 00:00 rsc.io/quote@v1.5.2/go.mod

793 00-00-1980 00:00 rsc.io/quote@v1.5.2/quote.go

917 00-00-1980 00:00 rsc.io/quote@v1.5.2/quote_test.go

$

I used zip because it is well-specified, widely supported, and cleanly extensible
if needed, and it allows random access to individual files. (In contrast, tar files,
the other obvious choice, are none of these things and don’t.)

https://storage.googleapis.com/gomodules/rsc/swtch.com/testmod/@v/list
https://storage.googleapis.com/gomodules/rsc/swtch.com/testmod/@v/v1.0.0.info
https://storage.googleapis.com/gomodules/rsc/swtch.com/testmod/@v/v1.0.0.mod
https://storage.googleapis.com/gomodules/rsc/swtch.com/testmod/@v/v1.0.0.zip
https://github.com/cockroachdb/cockroach

D G M

Download Protocol

To download information about modules, as well as the modules themselves, the
vgo prototype issues only simple HTTP GET requests. A key design goal was to
make it possible to serve modules from static hosting sites, so the requests have
no URL query parameters.

As we saw earlier, custom domains can specify that a module is hosted at a
particular base URL. As implemented in vgo today (but, like all of vgo, subject
to change), that module-hosting server must serve four request forms:

– GET baseURL/module/@v/list fetches a list of all known versions,
one per line.

– GET baseURL/module/@v/version.info fetches JSON-formatted
metadata about that version.

– GET baseURL/module/@v/version.mod fetches the go.mod file for that
version.

– GET baseURL/module/@v/version.zip fetches the zip file for that ver-
sion.

The JSON information served in the version.info form will likely evolve, but
today it corresponds to this struct:

type RevInfo struct {

Version string // version string

Name string // complete ID in underlying repository

Short string // shortened ID, for use in pseudo-version

Time time.Time // commit time

}

The vgo list -m -u command shows the commit time of each available update
by using the Time field.

A general module-hosting server may optionally respond to version.info re-
quests for non-semver versions as well. A vgo command like

vgo get my/thing/v2@1459def

will fetch 1459def.info and then derive a pseudo-version using the Time and
Short fields.

There are two more optional request forms:

– GET baseURL/module/@t/yyyymmddhhmmss returns the .info JSON
for the latest version at or before the given timestamp.

– GET baseURL/module/@t/yyyymmddhhmmss/branch does the same,
but limiting the search to commits on a given branch.

These support the use of untagged commits in vgo. If vgo is adding a module
and finds no tagged commits at all, it uses the first form to find the latest com-
mit as of now. It does the same when looking for available updates, assuming
there are still no tagged commits. The branch-limited form is used for the in-
ternal simulation of gopkg.in. These forms also support the command line syn-
taxes:

vgo get my/thing/v2@2018-02-01T15:34:45

vgo get my/thing/v2@2018-02-01T15:34:45@branch

These might be a mistake, but they’re in the prototype today, so I’m mentioning
them.

D G M

Proxy Servers

Both individuals and companies may prefer to download Go modules from
proxy servers, whether for efficiency, availability, security, license compliance, or
any other reason. Having a standard Go module format and a standard down-
load protocol, as described in the last two sections, makes it trivial to introduce
support for proxies. If the $GOPROXY environment variable is set, vgo fetches all
modules from the server at the given base URL, not from their usual locations.
For easy debugging, $GOPROXY can even be a file:/// URL pointing at a local
tree.

We intend to write a basic proxy server that serves from vgo’s own local
cache, downloading new modules as needed. Sharing such a proxy among a set
of computers would help reduce redundant downloads from the proxy’s users
but more importantly would ensure future availability, even if the original copies
disappear. The proxy will also have an option not to allow downloads of new
modules. In this mode, the proxy would limit the available modules to exactly
those whitelisted by the proxy administrator. Both proxy modes are frequently
requested features in corporate environments.

Perhaps some day it would make sense to establish a distributed collection of
proxy servers used by default in go get, to ensure module availability and fast
downloads for Go developers worldwide. But not yet. Today, we are focused on
making sure that go get works as well as it can without assuming any kind of
central proxy servers.

The End of Vendoring

Vendor directories serve two purposes. First, they specify by their contents the
exact version of the dependencies to use during go build. Second, they ensure
the availability of those dependencies, even if the original copies disappear. On
the other hand, vendor directories are also difficult to manage and bloat the
repositories in which they appear. With the go.mod file specifying the exact ver-
sion of dependencies to use during vgo build, and with proxy servers for en-
suring availability, vendor directories are now almost entirely redundant. They
can, however, serve one final purpose: to enable a smooth transition to the new
versioned world.

When building a module, vgo (and later go) will completely ignore vendored
dependencies; those dependencies will also not be included in the module’s zip
file. To make it possible for authors to move to vgo and go.mod while still sup-
porting users who haven’t converted, the new vgo vendor command populates
a module’s vendor directory with the packages users need to reproduce the vgo-
based build.

What’s Next?

The details here may be revised, but today’s go.mod files will be understood
by any future tooling. Please start tagging your packages with release tags; add
go.mod files if that makes sense for your project.

The next post in the series will cover changes to the go tool command line
experience.

