Minimal Version Selection
Go & Versioning, Part 4

Russ Cox
February 21, 2018

research.swich.com/vgo-mvs

A versioned Go command must decide which module versions to use in each
build. T call this list of modules and versions for use in a given build the build
list. For stable development, today’s build list must also be tomorrow’s build list.
But then developers must also be allowed to change the build list: to upgrade all
modules, to upgrade one module, or to downgrade one module.

The version selection problem therefore is to define the meaning of, and to
give algorithms implementing, these four operations on build lists:

1. Construct the current build list.

2. Upgrade all modules to their latest versions.

3. Upgrade one module to a specific newer version.
4. Downgrade one module to a specific older version.

The last two operations specify one module to upgrade or downgrade, but do-
ing so may require upgrading, downgrading, adding, or removing other mod-
ules, ideally as few as possible, to satisfy dependencies.

This post presents minimal version selection, a new, simple approach to the
version selection problem. Minimal version selection is easy to understand and
predict, which should make it easy to work with. It also produces high-fidelity
builds, in which the dependencies a user builds are as close as possible to the
ones the author developed against. It is also efficient to implement, using noth-
ing more complex than recursive graph traversals, so that a complete minimal
version selection implementation in Go is only a few hundred lines of code.

Minimal version selection assumes that each module declares its own depen-
dency requirements: a list of minimum versions of other modules. Modules are
assumed to follow the import compatibility rule—packages in any newer version
should work as well as older ones—so a dependency requirement gives only a
minimum version, never a maximum version or a list of incompatible later ver-
sions.

Then the definitions of the four operations are:

1. To construct the build list for a given target: start the list with the tar-
get itself, and then append each requirement’s own build list. If a mod-
ule appears in the list multiple times, keep only the newest version.

2. To upgrade all modules to their latest versions: construct the build list,
but read each requirement as if it requested the latest module version.

3. To upgrade one module to a specific newer version: construct the non-
upgraded build list and then append the new module’s build list. If a
module appears in the list multiple times, keep only the newest ver-
sion.

4. To downgrade one module to a specific older version: rewind the re-
quired version of each top-level requirement until that requirement’s
build list no longer refers to newer versions of the downgraded mod-
ule.

These operations are simple, efficient, and easy to implement.

vgo
https://research.swtch.com/vgo-mvs
vgo-intro
vgo-import

MINIMAL VERSION SELECTION

Example

Before we examine minimal version selection in more detail, let’s look at why a
new approach is necessary. We'll use the following set of modules as a running
example throughout the post:

c11 C12 C1.3

The diagram shows the module requirement graph for seven modules (dotted
boxes) with one or more versions. Following semantic versioning, all versions of
a given module share a major version number. We are developing module A 1,
and we will run commands to update its dependency requirements. The dia-
gram shows both A 1’s current requirements and the requirements declared by
various versions of released modules B 1 through F 1.

Because the major version is part of the modules identifier, we must know
that we are working on A 1 as opposed to A 2, but otherwise the exact version
of A is unspecified—our work is unreleased. Similarly, different major versions
are just different modules: for the purposes of these algorithms, B 1 is no more
related to B 2 than to C 1. We could replace B 1 through F 1 in the diagram
with A 2 through A 7 at a significant loss in clarity but without any change in
how the algorithms handle the example. Because all the modules in the exam-
ple do have major version 1, from now on we will omit the major version when
possible, shortening A 1 to A. Our current development copy of A requires B 1.2
and C 1.2. B 1.2 in turn requires D 1.3. An earlier version, B 1.1, required D 1.1.
And so on. Note that F 1.1 requires G 1.1, but G 1.1 also requires F 1.1. Declar-
ing this kind of cycle can be important when singleton functionality moves from
one module to another. Our algorithms must not assume the module require-
ment graph is acyclic.

Low-Fidelity Builds

Go’s current version selection algorithm is simplistic, providing two different
version selection algorithms, neither of which is right.

The first algorithm is the default behavior of go get: if you have a local ver-
sion, use that one, or else download and use the latest version. This mode can
use versions that are too old: if you have B 1.1 installed and run go get to
download A, go get would not update to B 1.2, causing a failed or buggy build.

The second algorithm is the behavior of go get -u: download and use the lat-
est version of everything. This mode fails by using versions that are too new: if
you run go get -u to download A, it will correctly update to B 1.2, but it will
also update to C 1.3 and E 1.3, which aren’t what A asks for, may not have been
tested, and may not work.

I call both these outcomes low-fidelity builds: viewed as attempts to reproduce
the build that A’s author used, these builds differ for no good reason. After we've
seen the details of the minimal version selection algorithms, we’ll look at why
they produce high-fidelity builds instead.

MINIMAL VERSION SELECTION

Algorithms
Now let’s look at the algorithms in more detail.
Algorithm 1: Construct Build List

There are two useful (and equivalent) ways to define build list construction: as
a recursive process and as a graph traversal.

The recursive definition of build list construction is as follows. Construct the
rough build list for M by starting an empty list, adding M, and then appending
the build list for each of M’s requirements. Simplify the rough build list to pro-
duce the final build list, by keeping only the newest version of any listed module.

roughlist final list
A1 |t+|B1.2|T|C1.2|=| A1 || A1

D13 D14 B1.2 B1.2
E1.2 E1.2 c1.2 c1.2

D13 D14
D14 E1.2
E1.2

The recursive construction of build lists is useful mainly as a mental model. A
literal implementation of that definition would be too inefficient, potentially re-
quiring time exponential in the size of an acyclic module requirement graph and
running forever on a cyclic graph.

An equivalent, more efficient construction is based on graph reachability. The
rough build list for M is also just the list of all modules reachable in the require-
ment graph starting at M and following arrows. This can be computed by a triv-
ial recursive traversal of the graph, taking care not to visit a node that has al-
ready been visited. For example, A’s rough build list is the highlighted module
versions found by starting at A and following the highlighted arrows:

: C1.1 C12 C13

D11

...

E12 E13

(The simplification from rough build list to final build list remains the same.)
Note that this algorithm only visits each module in the rough build list once,
and only those modules, so the execution time is proportional to the rough build
list size |B| plus the number of arrows that must be traversed (at most |B|?). The
algorithm completely ignores versions left off the rough build list: for example,
it loads information about D 1.3, D 1.4, and E 1.2, but it does not load informa-
tion about D 1.2, E 1.1 or E 1.3. In a dependency management setting, where
loading information about each module version may mean a separate network
round trip, avoiding unnecessary module versions is an important optimization.

MINIMAL VERSION SELECTION

Algorithm 2. Upgrade All Modules

Upgrading all modules is perhaps the most common modification made to build
lists. It is what go get -u does today.

We compute an upgraded build list by upgrading the module requirement
graph and then applying the previous algorithm. An upgraded module require-
ment graph is one in which every arrow pointing at any version of a module has
been replaced by one pointing at the latest version of that module. (It is then
also possible to discard all older versions from the graph, but the build list con-
struction won't look at them anyway, so there’s no need to clean up the graph.)

For example, here is the upgraded module requirement graph, with the orig-
inal build list still marked in yellow and the upgraded build list now marked in
red:

Although this tells us the upgraded build list, it does not yet tell us how to cause
future builds to use that build list instead of the old build list (still marked in
yellow). To upgrade the graph we changed the requirements for all modules, but
an upgrade during development of module A must somehow be recorded only
in A’s requirement list (in As go.mod file) in a way that causes Algorithm 1 to
produce the build list we want, to pick the red modules instead of the yellow
ones. To decide what to add to A’s requirement list to cause that effect, we in-
troduce a helper, Algorithm R.

Algorithm R. Compute a Minimal Requirement List

Given a build list compatible with the module requirement graph below the tar-
get, we want to compute a requirement list for the target that will induce that
build list. It is always sufficient to list every module in the build list other than
the target itself. For example, the upgrade we considered above could add C 1.3
(replacing C 1.2), D 1.4, E 1.3, F 1.1, and G 1.1 to As requirement list. But in
general not all of these additions are necessary, and we want to list as few ad-
ditional modules as possible. For example, F 1.1 implies G 1.1 (and vice versa),
so we need not list both. At first glance it seems natural to start by adding the
module versions marked in red but not yellow (on the new list but missing from
the old list). That heuristic would incorrectly drop D 1.4, which is implied by
the old requirement C 1.2 but not by the new requirement C 1.3.

Instead, it is correct to visit the modules in reverse postorder—that is, to visit
a module only after considering all modules that point into it—and only keep a
module if it is not implied by modules already visited. For an acyclic graph, the
result is a unique, minimal set of additions. For a cyclic graph, the reverse-pos-
torder traversal must break cycles, and then the set of additions is unique and
minimal for the modules not involved in cycles. As long as the result is correct
and stable, we'll accept non-minimal answers in the case of cycles. In this exam-
ple, the upgrade needs to add C 1.3 (replacing C 1.2), D 1.4, and E 1.3. It can
drop F 1.1 (implied by C 1.3) and G 1.1 (also implied by C 1.3).

MINIMAL VERSION SELECTION

Algorithm 3. Upgrade One Module

Instead of upgrading all modules, cautious developers typically want to upgrade
only one module, with as few other changes to the build list as possible. For ex-
ample, we may want to upgrade to C 1.3, and we do not want that operation
to make unnecessary changes like upgrading to E 1.3. Like in Algorithm 2, we
can upgrade one module by upgrading the requirement graph, constructing a
build list from it (Algorithm 1), and then reducing that list back to a set of re-
quirements for the top-level module (Algorithm R). To upgrade the requirement
graph, we add one new arrow from the top-level module to the upgraded mod-
ule version.

For example, if we want to change A’s build to upgrade to C 1.3, here is the
upgraded requirement graph:

D11 D12 D13 D14 Fl1

Like before, the new build lists modules are marked in red, and the old build
list’s are in yellow.

The upgrade’s effect on the build list is the unique minimal way to make
the upgrade, adding the new module version and any implied requirements but
nothing else. Note that when constructing the upgraded graph, we must only
add new arrows, not replace or remove old ones. For example, if the new arrow
from A to C 1.3 replaced the old arrow from A to C 1.2, the upgraded build list
would omit D 1.4. That is, the upgrade of C would downgrade D, an unexpect-
ed, unwanted, and non-minimal change. Once we've computed the build list for
the upgrade, we can run Algorithm R (above) to decide how to update the re-
quirements list. In this case we'd end up replacing C 1.2 with C 1.3 but then also
adding a new requirement on D 1.4, to avoid the accidental downgrade of D.
Note that this selective upgrade only updates other modules to C’s minimum re-
quirements: the upgrade of C does not simply fetch the latest of each of C’s de-
pendencies.

Algorithm 4. Downgrade One Module

We may also discover, perhaps after upgrading all modules, that the latest mod-
ule version is buggy and must be avoided. In that situation, we need to be able to
downgrade to an earlier version of the module. Downgrading one module may
require downgrading other modules, but we want to downgrade as few other
modules as possible. Like upgrades, downgrades must make their changes to the
build list by modifying a target’s requirements list. Unlike upgrades, downgrades
must work by removing requirements, not adding them. This observation leads
to a very simple downgrade algorithm that considers each of the target’s require-
ments individually. If a requirement is incompatible with the proposed down-
grade—that is, if the requirement’s build list includes a now-disallowed module
version—then try successively older versions until finding one that is compati-
ble with the downgrade.

For example, starting with the original build graph, suppose we discover that

MINIMAL VERSION SELECTION

there is a problem with D 1.4, actually introduced in D 1.3, and so we decide
to downgrade to D 1.2. Our target module A depends on B 1.2 and C 1.2. To
downgrade from D 1.4 to D 1.2, we must find earlier versions of B and C that
do not require (directly or indirectly) versions of D later than D 1.2.

Although we can consider each requirement separately, it is more efficient to
consider the module requirement graph as a whole. In our example, the down-
grade rule amounts to crossing out the unavailable versions of D and then fol-
lowing arrows backwards from unavailable modules to find and cross out other
unavailable modules. At the end, the latest versions of As requirements that re-
main can be recorded as the new requirements.

In this case, downgrading to D 1.2 implies downgrading to B 1.1 and C 1.1. To
avoid an unnecessary downgrade to E 1.1, we must also add a new requirement
on E 1.2. We can apply Algorithm R to find the minimal set of new require-
ments to write to go.mod.

Note that if wed first upgraded to C 1.3, then the downgrade to D 1.2 would
have continued to use C 1.3, which doesn't use any version of D at all. But down-
grades are constrained to only downgrade packages, not also upgrade them; if
an upgrade before downgrade is needed, the user must ask for it explicitly.

Theory

Minimal version selection is very simple. It achieves simplicity by eliminating all
flexibility about what the answer must be: the build list is exactly the versions
specified in the requirements. A real system needs more flexibility, for example
the ability to exclude certain module versions or replace others. Before we add
those, it is worth examining the theoretical basis for the current system’s sim-
plicity, so we understand which kinds of extensions preserve that simplicity and
which do not.

If you are familiar with the way most other systems approach version selec-
tion, or if you remember my [Version SAT post from a year ago, probably the
most striking feature of Minimal version selection is that it does not solve gen-
eral Boolean satisfiability, or SAT. As I explained in my earlier post, it takes very
little for a version search to fall into solving SAT; version searches in these sys-
tems are inherently intricate, complex problems for which we know no gener-
al efficient solutions. If we want to avoid this fate, we need to know where the
boundaries are, where not to step as we explore the design space. Convenient-
ly, Schaefer’s Dichotomy Theorem describes those boundaries precisely. It iden-
tifies six restricted classes of Boolean formulas for which satisfiability can be de-
cided in polynomial time and then proves that for any class of formulas beyond
those, satisfiability is NP-complete. To avoid NP-completeness, we need to limit
the version selection problem to stay within one of Schaefer’s restricted classes.

It turns out that minimal version selection lies in the intersection of three of
the six tractable SAT subproblems: 2-SAT, Horn-SAT, and Dual-Horn-SAT. The

version-sat
https://en.wikipedia.org/wiki/Schaefer%27s_dichotomy_theorem

MINIMAL VERSION SELECTION

formula corresponding to a build in minimal version selection is the AND of a
set of clauses, each of which is either a single positive literal (this version must
be installed, such as during an upgrade), a single negative literal (this version is
not available, such as during a downgrade), or the OR of one negative and one
positive literal (an implication: if this version is installed, this other version must
also be installed). The formula is a 2-CNF formula, because each clause has at
most two variables. The formula is also a Horn formula, because each clause has
at most one positive literal. The formula is also a dual-Horn formula, because
each clause has at most one negative literal. That is, every satisfiability problem
posed by minimal version selection can be solved by your choice of three dif-
ferent efficient algorithms. It is even simpler and more efficient to specialize fur-
ther, as we did above, taking advantage of the very limited structure of these
problems.

Although 2-SAT is the most well-known example of a SAT subproblem with
an eflicient solution, the fact that these problems are both Horn and dual-Horn
formulas is more interesting. Every Horn formula has a unique satisfying assign-
ment with the fewest variables set to true. This proves that there is a unique
minimal answer for constructing a build list, as well for each upgrade. The
unique minimal upgrade does not use a newer version of a given module unless
absolutely necessary. Conversely, every dual-Horn formula also has a unique sat-
isfying assignment with the fewest variables set to false. This proves that there is
a unique minimal answer for each downgrade. The unique minimal downgrade
does not use an older version of a given module unless absolutely necessary. If
we want to extend minimal version selection, for example with the ability to ex-
clude certain modules, we can only keep the uniqueness and mimimality prop-
erties by continuing to use constraints expressible as both Horn and dual-Horn
formulas.

(Digression: The problem minimal version selection solves is NL-complete: it’s
in NL because its a subset of 2-SAT, and it’s NL-hard because st-connectivity
can be trivially transformed into a minimal version selection build list construc-
tion problem. It’s delightful that we've replaced an NP-complete problem with an
NL-complete problem, but there’s little practical value to knowing that: being in
NL only guarantees a polynomial-time solution, and we already have a linear-
time one.)

Excluding Modules

Minimal version selection always selects the minimal (oldest) module version
that satisfies the overall requirements of a build. If that version is buggy in
some way, an upgrade or downgrade operation can modify the top-level target’s
requirements list to force selection of a different version.

It can also be useful to record explicitly that the version is buggy, to avoid
reintroducing it in any future upgrade or downgrade operations. But we want
to do that in a way that keeps the uniqueness and minimality properties of the
previous section, so we must use constraints that are both Horn and dual-Horn
formulas. That means build constraints can only be unconditional positive as-
sertions (X: X must be installed), unconditional negative assertions (=Y: Y must
not be installed), and positive implications (X — Z, equivalently =X O Z: if X is
installed, then Z must be installed). Negative implications (X — -, equivalent-
ly - X O-Y: if X is installed, then Y must not be installed) cannot be added as
constraints without breaking the form. Module exclusions must therefore be un-
conditional: they must be decided independent of selections made during build
list construction.

What we can do is allow a module to declare its own local list of excluded
module versions. By local, I mean that the list is consulted only for builds with-

https://en.wikipedia.org/wiki/NL-complete

MINIMAL VERSION SELECTION

in that module; a larger build using the module only as a dependency would ig-
nore the exclusion list. In our example, if As build consulted D 1.3’ list, then
the exact set of exclusions would depend on whether the build selected, say, D
1.3 or D 1.4, making the exclusions conditional and leading to an NP-complete
search problem. Only the top-level module is guaranteed to be in the build, so
only the top-level module’s exclusion list is used. Note that it would be fine to
consult exclusion lists from other sources, such as a global exclusion list loaded
over the network, as long as the decision to use the list is made before the build
begins and the list content does not depend on which modules are selected dur-
ing the build.

Despite all the focus on making exclusions unconditional, it might seem like
we already have conditional exclusions: C 1.2 requires D 1.4 and so implicitly
excludes D 1.3. But our algorithms do not treat this as an exclusion. When Al-
gorithm 1 runs, it adds both D 1.3 (for B) and D 1.4 (for C) to the rough build
list, along with their minimum requirements. The final simplification pass re-
moves D 1.3 only because D 1.4 is present. The difference here between declar-
ing an incompatibility and declaring a minimum requirement is critical. Declar-
ing that C 1.2 must not be built with D 1.3 only describes how to fail. Declar-
ing that C 1.2 must be built with D 1.4 instead describes how to succeed.

Exclusions then must be unconditional. Knowing that fact is important, but
it does not tell us exactly how to implement exclusions. A simple answer is to
add exclusions as the build constraints, with clauses like “D 1.3 must not be in-
stalled” Unfortunately, adding that clause alone would make modules that re-
quire D 1.3, like B 1.2, uninstallable. We need to express somehow that B 1.2 can
choose D 1.4. The simple way to do that is to revise the build constraint, chang-
ing“B1.2 -~ D 13”to“B 1.2 - D 1.3 D 1.4” and in general allowing all fu-
ture versions of D. But that clause (equivalently, =B 1.2 0D 1.3 0D 1.4) has two
positive literals, making the overall build formula not a Horn formula anymore.
It is still a dual-Horn formula, so we can still define a linear-time build list con-
struction, but that construction—and therefore the question of how to perform
an upgrade—would no longer be guaranteed to have a unique, minimal answer.

Instead of implementing exclusions as new build constraints, we can imple-
ment them by changing existing ones. That is, we can modify the requirements
graph, just as we did for upgrades and downgrades. If a specific module is ex-
cluded, then we can remove it from the module requirement graph but also
change any existing requirements on that module to require the next newer ver-
sion instead. For example, if we excluded D 1.3, then we'd also update B 1.2 to
require D 1.4:

c11 C12 C1.3

E12 E13

If the latest version of a module is removed, then any modules requiring that
version also need to be removed, as in the downgrade algorithm. For example,
if G 1.1 were removed, then C 1.3 would need to be removed as well.

Once the exclusions have been applied to the module requirement graph, the
algorithms proceed as before.

MINIMAL VERSION SELECTION

Replacing Modules

During development of A, suppose we find a bug in D 1.4, and we want to test
a potential fix. We need some way to replace D 1.4 in our build with an unre-
leased copy U. We can allow a module to declare this as a replacement: “proceed
as if D 1.4’s source code and requirements have been replaced by U’s”

Like exclusions, replacements can be implemented by modifying the module
requirement graph in a preprocessing step, not by adding complexity to the al-
gorithms that process the graph. Also like exclusions, the replacement list is lo-
cal to one module. The build of A consults the replacement list from A but not
from B 1.2, C 1.2, or any of the other modules in the build. This avoids mak-
ing replacements conditional, which would be difficult to implement, and it also
avoids the possibility of conflicting replacements: what if B 1.2 and C 1.2 spec-
ify different replacements for E 1.22 More generally, keeping exclusions and re-
placements local to one module limits the control that module exerts on other
builds.

Who Controls Your Build?

The dependencies of a top-level module must be given some control over the
top-level build. B 1.2 needs to be able to make sure it is built with D 1.3 or lat-
er, not with D 1.2. Otherwise we end up with the current go get’s stale depen-
dency failure mode.

At the same time, for builds to remain predictable and understandable, we
cannot give dependencies arbitrary, fine-grained control over the top-level build.
That leads to conflicts and surprises. For example, suppose B declares that it re-
quires an even version of D, while C declares that it requires a prime version
of D. D is frequently updated and is up to D 1.99. Using B or C in isolation,
it’s always possible to use a relatively recent version of D (D 1.98 or D 1.97, re-
spectively). But when A uses both B and C, the build silently selects the much
older (and buggier) D 1.2 instead. That’s an extreme example, but it raises the
question: why should the authors of B and C be given such extreme control
over As build? As I write this post, there is an lopen bug report that the Ku-
bernetes Go client declares a requirement on a specific, two-year-old version of
gopkg.in/yaml.v2. When a developer tried to use a new feature of that YAML
library in a program that already used the Kubernetes Go client, even after at-
tempting to upgrade to the latest possible version, code using the new feature
failed to compile, because “latest” had been constrained by the Kubernetes re-
quirement. In this case, the use of a two-year-old YAML library version may be
entirely reasonable within the context of the Kubernetes code base, and clearly
the Kubernetes authors should have complete control over their own builds, but
that level of control does not make sense to extend to other developers’ builds.

In the design of module requirements, exclusions, and replacements, I've tried
to balance the competing concerns of allowing dependencies enough control
to ensure a succesful build without allowing them so much control that they
harm the build. Minimum requirements combine without conflict, so it is fea-
sible (even easy) to gather them from all dependencies. But exclusions and re-
placements can and do conflict, so we allow them to be specified only by the
top-level module.

A module author is therefore in complete control of that module’s build when
it is the main program being built, but not in complete control of other users’
builds that depend on the module. I believe this distinction will make minimal
version selection scale to much larger, more distributed code bases than existing
systems.

https://github.com/kubernetes/client-go/issues/325

MINIMAL VERSION SELECTION

High-Fidelity Builds

Let’s return now to the question of high-fidelity builds.

At the start of the post we saw that, using go get to build A, it was possi-
ble to use dependencies different than the ones As author had used, without a
good reason. I called this as a low-fidelity build, because it is a poor reproduc-
tion of the original build of A. Using minimal version selection, builds are in-
stead high-fidelity. The module requirements, which are included with the mod-
ule’s source code, uniquely determine how to build it directly. The user’s build
of A will match the author’s build exactly: a reproducible build. But high-fideli-
ty means more.

Having a reproducible build is generally understood to be a binary property,
for a whole-program build: a user’s build is exactly the same the author’, or it
isn't. What about when building a library module as part of a larger program?
It would be helpful for a user’s build of a library to match the author’s whenev-
er possible. Then the user runs the same code (including dependencies) that the
author developed and tested with. In a larger project, of course, it may be im-
possible for a user’s build of a library to match the author’s build exactly. Anoth-
er part of that build may force the use of a newer dependency, making the us-
ers build of the library deviate from the author’s build. Let’s refer to a build as
high-fidelity when it deviates from the author’s own build only to satisfy a re-
quirement elsewhere in the build.

Consider again our original example:

: C1.1 C12 C13

E11 E12 E13 | G111

In this example, the build of A combines B 1.2 and D 1.4, even though B’s au-
thor was using D 1.3. That change is necessary because A also uses C 1.2, which
requires D 1.4. The build of A is still a high-fidelity build of B 1.2: it deviates
by using D 1.4, but only because it must. In contrast, if the build used E 1.3, as
go get -u, Dep, and Cargo typically do, that build would be low-fidelity: it de-
viates unnecessarily.

Minimal version selection provides high-fidelity builds by using the oldest
version available that meets the requirements. The release of a new version has
no effect on the build. In contrast, most other systems, including Cargo and Dep,
use the newest version available that meets requirements listed in a “manifest
file” The release of a new version changes their build decisions. To get repro-
ducible builds, these systems add a second mechanism, the “lock file,” which lists
the specific versions a build should use. The lock file ensures reproducible builds
for whole programs, but it is ignored for library modules; the Cargo FAQ ex-
plains that this is “precisely because a library should not be deterministically re-
compiled for all users of the library” It’s true that a perfect reproduction is not
always possible, but by giving up entirely, the Cargo approach admits unneces-
sary deviation from the library author’s builds. That is, it delivers low-fidelity
builds. In our example, when A first adds B 1.2 or C 1.2 to its build, Cargo will

10

cargo-newest.html
http://doc.crates.io/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries

MINIMAL VERSION SELECTION

see that they require E 1.2 or later and will choose E 1.3. Until directed other-
wise, however, it seems better to continue to build with E 1.2, as the authors of
B and C did. Using the oldest allowed version also eliminates the redundancy of
having two different files (manifest and lock) that both specify which modules
versions to use.

Automatically using newer versions also makes it easy for minimum require-
ments to be wrong. Suppose we start working on A using B 1.1, the latest ver-
sion at the time, and we record that A requires only B 1.1. But then B 1.2 comes
out and we start using it in our own builds and lock file, without updating the
manifest. At this point there is no longer any development or testing of A with B
1.1. We may start using features or depending on bug fixes from B 1.2, but now
A incorrectly lists its minimum requirement as B 1.1. If users always also choose
newer versions than the minimum requirement, then there is not much harm
done: they’ll use B 1.2 as well. But when the system does try to use the declared
minimum, it will break. For example, when a user attempts a limited update of
A, the system cannot see that updating to B 1.2 is also required. More general-
ly, whenever the minimum versions (in the manifest) and the built versions (in
the lock file) differ, why should we believe that building with the minimum ver-
sions will produce a working library? To try to detect this problem, Cargo de-
velopers have proposed that cargo publish try a build with the minimum ver-
sions of all dependencies before publishing. That will detect when A starts us-
ing a new feature in B 1.2—building with B 1.1 will fail—but it will not detect
when A starts depending on a new bug fix.

The fundamental problem is that preferring the newest allowed version of a
module during version selection produces a low-fidelity build. Lock files are a
partial solution, targeting whole-program builds; additional build checks like in
cargo publish are also a partial solution. A more complete solution is to use
the version of the module the author did. That makes a user’s build as close as
possible to the author’s build: a high-fidelity build.

Upgrade Speed

Given that minimal version selection takes the minimum allowed version of
each dependency, it’s easy to think that this would lead to use of very old copies
of packages, which in turn might lead to unnecessary bugs or security problems.
In practice, however, I think the opposite will happen, because the minimum al-
lowed version is the maximum of all the constraints, so the one lever of control
made available to all modules in a build is the ability to force the use of a new-
er version of a dependency than would otherwise be used. I expect that users of
minimal version selection will end up with programs that are almost as up-to-
date as their friends using more aggressive systems like Cargo.

For example, suppose you are writing a program that depends on a handful
of other modules, all of which depend on some very common module, like gop-
kg.in/yaml.v2. Your program’s build will use the newest YAML version among
the ones requested by your module and that handful of dependencies. Even just
one conscientious dependency can force your build to update many other de-
pendencies. This is the opposite of the Kubernetes Go client problem I men-
tioned earlier.

If anything, minimal version selection would instead suffer the opposite prob-
lem, that this “max of the minimums” answer serves as a ratchet that forces de-
pendencies forward too quickly. But I think in practice dependencies will move
forward at just the right speed, which ends up being just the right amount slow-
er than Cargo and friends.

11

https://github.com/rust-lang/cargo/issues/4100

MINIMAL VERSION SELECTION

Upgrade Timing

A key feature of minimal version selection is that upgrade do not happen un-
til a developer asks for them to happen. You don’t get an untested version of a
module unless you asked for that module to be upgraded.

For example, in Cargo, if package B depends on package C 2.9 and you add
B to your build, you don't get C 2.9. You get the latest allowed version at that
moment, maybe C 2.15. Maybe C 2.15 was released just a few minutes ago and
the author hasn’t yet been told about an important bug. That’s too bad for you
and your build. On the other hand, in minimal version selection, module B’s
go.mod file will list the exact version of C that B’s author developed and tested
with. You'll get that version. Or maybe some other module in your program de-
veloped and tested with a newer version of C. Then you’ll get that version. But
you will never get a version of C that some module in the program did not ex-
plicitly request in its go.mod file. This should mean you only ever get a version
of C that worked for someone else, not the very latest version that maybe hasn't
worked for anyone.

To be clear, my purpose here is not to pick on Cargo, which I think is a very
well-designed system. I'm using Cargo here as an example of a model that many
developers are familiar with, to try to convey what would be different in mini-
mal version selection.

Minimality

I call this system minimal version selection because the system as a whole ap-
pears to be minimal: I don't see how to remove anything more without break-
ing it. Some people will undoubtedly say that too much has been removed al-
ready, but so far it seems perfectly able to handle the real-world cases I've ex-
amined. We'll find out more by experimenting with the vgo prototype.

The key to minimal version selection is its preference for the minimum al-
lowed version of a module. When I compared go get -u’s “upgrade everything
to latest” approach to Cargo’s “manifest and lock” approach in the context of a
system that can rely on the import compatibility rule, I realized that both man-
ifest and lock exist for the same purpose: to work around the “upgrade every-
thing to latest” default behavior. The manifest describes which newer versions
are unneeded, and the lock describes which newer versions are unwanted. In-
stead, why not change the default? Use the minimum version allowed, typically
the exact version the author used, and leave timing of upgrades completely to
user control. This approach leads to reproducible builds without lock files, and
more generally to high-fidelity builds that deviate from the author’s own build
only when required.

More than anything else, I wanted to find a version selection algorithm that
was understandable. Predictable. Boring. Where other systems instead seem to
optimize for displays of raw flexibility and power, minimal version selection
aims to be invisible. I hope it succeeds.

12

cargo-newest.html
vgo-import

