The Principles of Versioning in Go
Go & Versioning, Part 11

Russ Cox
December 3, 2019

research.swich.com/vgo-principles

This blog post is about how we added package versioning to Go, in the form of
Go modules, and the reasons we made the choices we did. It is adapted and up-
dated from a [talk I gave at GopherCon Singapore in 2018.

Why Versions?

To start, let’s make sure were all on the same page, by taking a look at the ways
the GOPATH-based go get breaks.

Suppose we have a fresh Go installation and we want to write a program
that imports D. We run go get D. Remember that we are using the original
GOPATH-based go get, not Go modules.

$ go get D
Requirements
D 1.0 none
That looks up and downloads the latest version of D, which right now is D 1.0.
It builds. We're happy.

Now suppose a few months later we need C. We run go get C. That looks up
and downloads the latest version of C, which is C 1.8.

$ go get C
Requirements c1.8
C1.8 D=14
D 1.0 none
broken!

C imports D, but go get finds that it has already downloaded a copy of D, so it
reuses that copy. Unfortunately, that copy is still D 1.0. The latest copy of C was
written using D 1.4, which contains a feature or maybe a bug fix that C needs
and which was missing from D 1.0. So C is broken, because the dependency D
is too old.

Since the build failed, we try again, with go get -u C.

$ go get -u C

Requirements
C18 D=14

D 1.6 none

(C 1.8 was tested with D 1.4
and has an unexpected broken!
incompatibility with D 1.6.)

c1.8

Unfortunately, an hour ago D’s author published D 1.6. Because go get -u uses
the latest version of every dependency, including D, it turns out that C is still
broken. C’s author used D 1.4, which worked fine, but D 1.6 has introduced a
bug that keeps C from working properly. Before, C was broken because D was
too old. Now, C is broken because D is too new.

Those are the two ways that go get fails when using GOPATH. Sometimes it

vgo
https://research.swtch.com/vgo-principles
https://www.youtube.com/watch?v=F8nrpe0XWRg

THE PRINCIPLES OF VERSIONING IN GO

uses dependencies that are too old. Other times it uses dependencies that are too
new. What we really want in this case is the version of D that C’s author used
and tested against. But GOPATH-based go get can’t do that, because it has no
awareness of package versions at all.

Go programmers started asking for better handling of package versions as
soon as we published goinstall, the original name for go get. Various tools
were written over many years, separate from the Go distribution, to help make
installing specific versions easier. But because those tools did not agree on a sin-
gle approach, they didn’t work as a base for creating other version-aware tools,
such as a version-aware godoc or a version-aware vulnerability checker.

We needed to add the concept of package versions to Go for many reasons.
The most pressing reason was to help go get stop using code that’s too old or
too new, but having an agreed-upon meaning of versions in the vocabulary of
Go developers and tools enables the entire Go ecosystem to become version-
aware. The Go module mirror and checksum database, which safely speed up
Go package downloads, and the new Wversion-aware Go package discovery site
are both made possible by an ecosystem-wide understanding of what a version
is.

Versions for Software Engineering

Over the past two years, we have added support for package versions to Go it-
self, in the form of Go modules, built into the go command. Go modules intro-
duce a new import path syntax called semantic import versioning, along with a
new algorithm for selecting which versions to use, called minimal version selec-
tion.

You might wonder: Why not do what other languages do? Java has Maven,
Node has NPM, Ruby has Bundler, Rust has Cargo. How is this not a solved
problem?

You might also wonder: We introduced a new, experimental Go tool called
Dep in early 2018 that implemented the general approach pioneered by Bundler
and Cargo. Why did Go modules not reuse Dep’s design?

The answer is that we learned from Dep that the general Bundler/Cargo/Dep
approach includes some decisions that make software engineering more com-
plex and more challenging. Thanks to learning about the problems were in Dep’s
design, the Go modules design made different decisions, to make software en-
gineering simpler and easier instead.

But what is software engineering? How is software engineering different from
programming? I like {the following definition:

Software engineering is what happens to programming
when you add time and other programmers.

Programming means getting a program working. You have a problem to solve,
you write some Go code, you run it, you get your answer, youre done. Thats
programming, and that’s difficult enough by itself.

But what if that code has to keep working, day after day? What if five other
programmers need to work on the code too? What if the code must adapt grace-
fully as requirements change? Then you start to think about version control sys-
tems, to track how the code changes over time and to coordinate with the other
programmers. You add unit tests, to make sure bugs you fix are not reintroduced
over time, not by you six months from now, and not by that new team mem-
ber who's unfamiliar with the code. You think about modularity and design pat-
terns, to divide the program into parts that team members can work on mostly
independently. You use tools to help you find bugs earlier. You look for ways to
make programs as clear as possible, so that bugs are less likely. You make sure

https://blog.golang.org/module-mirror-launch
https://blog.golang.org/go.dev#Explore
https://research.swtch.com/vgo-eng

THE PRINCIPLES OF VERSIONING IN GO

that small changes can be tested quickly, even in large programs. Youre doing
all of this because your programming has turned into software engineering.

(This definition and explanation of software engineering is my riff on an orig-
inal theme by my Google colleague Titus Winters, whose preferred phrasing is
“software engineering is programming integrated over time Its worth seven
minutes of your time to see his presentation of this idea at CppCon 2017, from
8:17 to 15:00 in the video.)

Nearly all of Gos distinctive design decisions were motivated by concerns
about software engineering. For example, most people think that we format Go
code with gofmt to make code look nicer or to end debates among team mem-
bers about program layout. And to some degree we do. But the more important
reason for gofmt is that if an algorithm defines how Go source code is format-
ted, then programs, like goimports or gorename or go fix, can edit the source
code more easily. This helps you maintain code over time.

As another example, Go import paths are URLs. If code imported "uuid",
youd have to ask which uuid package. Searching for uuid on pkg.go.dev
turns up dozens of packages with that name. If instead the code imports
"github.com/google/uuid", now its clear which package we mean. Using
URLs avoids ambiguity and also reuses an existing mechanism for giving out
names, making it simpler and easier to coordinate with other programmers.
Continuing the example, Go import paths are written in Go source files, not
in a separate build configuration file. This makes Go source files self-contained,
which makes it easier to understand, modify, and copy them. These decisions
were all made toward the goal of simplifying software engineering.

Principles

There are three broad principles behind the changes from Deps design to Go
modules, all motivated by wanting to simplify software engineering. These are
the principles of compatibility, repeatability, and cooperation. The rest of this
post explains each principle, shows how it led us to make a different decision
for Go modules than in Dep, and then responds, as fairly as I can, to objections
against making that change.

Principle #1: Compatibility

The meaning of a name in a program should not change over time.

The first principle is compatibility. Compatibility—or, if you prefer, stability—is
the idea that, in a program, the meaning of a name should not change over time.
If a name meant one thing last year, it should mean the same thing this year and
next year.

For example, programmers are sometimes confused by a detail of
strings.Split. We all expect that splitting “hello world” produces two
strings “hello” and “world” But if the input has leading, trailing, or repeated
spaces, the result contains empty strings too.

Example: strings.Split(x, " ")

"hello world" => {"hello", "world"}

"hello world" => {"hello", "", "world"}
" hello world" => {"", "hello", "world"}
"hello world " => {"hello", "world", ""}

Suppose we decide that it would be better overall to change the behavior of
strings.Split to omit those empty strings. Can we do that?
No.

https://www.youtube.com/watch?v=tISy7EJQPzI&t=8m17s
https://pkg.go.dev/

THE PRINCIPLES OF VERSIONING IN GO

We've given strings.Split a specific meaning. The documentation and the
implementation agree on that meaning. Programs depend on that meaning.
Changing the meaning would break those programs. It would break the princi-
ple of compatibility.

We can implement the new meaning; we just need to give a new name too.
In fact, years ago, to solve this exact problem, we introduced strings.Fields,
which is tailored to space-separated fields and never returns empty strings.

Example: strings.Fields(x)

"hello world" => {"hello", "world"}
"hello world" => {"hello", "world"}
" hello world" => {"hello", "world"}
"hello world " => {"hello", "world"}

We didn’t redefine strings.Split, because we were concerned about compat-
ibility.

Following the principle of compatibility simplifies software engineering, be-
cause it lets you ignore time when trying to understand programming. Peo-
ple don't have to think, “well this package was written in 2015, back when
strings.Split returned empty strings, but this other package was written last
week, so it expects strings.Split to leave them out” And not just people.
Tools don’t have to worry about time either. For example, a refactoring tool can
always move a strings.Split call from one package to another without wor-
rying that it will change its meaning.

In fact, the most important feature of Go 1 was not a language change or a
new library feature. It was the declaration of compatibility:

It is intended that programs written to the Go 1 specification will con-

tinue to compile and run correctly, unchanged, over the lifetime of

that specification. Go programs that work today should continue to

work even as future “point” releases of Go 1 arise (Go 1.1, Go 1.2, etc.).
— olang.org/doc/go1compat

We committed that we would stop changing the meaning of names in the stan-
dard library, so that programs working with Go 1.1 could be expected to con-
tinue working in Go 1.2, and so on. That ongoing commitment makes it easy
for users to write code and keep it working even as they upgrade to newer Go
versions to get faster implementations and new features.

What does compatibility have to do with versioning? It’s important to think
about compatibility because the most popular approach to versioning to-
day—semantic versioning—instead encourages incompatibility. That is, semantic
versioning has the unfortunate effect of making incompatible changes seem easy.

Every semantic version takes the form vMAJOR.MINOR.PATCH. If two ver-
sions have the same major number, the later (if you like, greater) version is ex-
pected to be backwards compatible with the earlier (lesser) one. But if two ver-
sions have different major numbers, they have no expected compatibility rela-
tionship.

Semantic versioning seems to suggest, “It's okay to make incompatible changes
to your packages. Tell your users about them by incrementing the major version
number. Everything will be fine” But this is an empty promise. Incrementing the
major version number isn't enough. Everything is not fine. If strings.Split
has one meaning today and a different meaning tomorrow, simply reading your
code is now software engineering, not programming, because you need to think
about time.

It gets worse.

https://golang.org/doc/go1compat
https://semver.org

THE PRINCIPLES OF VERSIONING IN GO

Suppose B is written to expect strings.Split v1, while C is written to ex-
pect strings.Split v2. Thats fine if you build each by itself.

Requirements
C
B strings.Split v1

C strings.Split v2

| strings.Split v1 | | strings.Split v2 |

But what happens when your package A imports both B and C? If
strings.Split has to have just one meaning, there’s no way to build a work-
ing program.

Requirements
A BC A
B strings.Split v1

C strings.Split v2 “
| strings.Split v? |

For the Go modules design, we realized that the principle of compatibility is
absolutely essential to simplifying software engineering and must be supported,
encouraged, and followed. The Go FAQ has encouraged compatibility since Go
1.2 in November 2013:

Packages intended for public use should try to maintain backwards
compatibility as they evolve. The Go 1 compatibility guidelines are a
good reference here: don’t remove exported names, encourage tagged
composite literals, and so on. If different functionality is required, add
a new name instead of changing an old one. If a complete break is re-
quired, create a new package with a new import path.

For Go modules, we gave this old advice a new name, the import compatibility
rule:

If an old package and a new package have the same import path,
the new package must be backwards compatible with the old package.

But then what do we do about semantic versioning? If we still want to use se-
mantic versioning, as many users expect, then the import compatibility rule re-
quires that different semantic major versions, which by definition have no com-
patibility relationship, must use different import paths. The way to do that in
Go modules is to put the major version in the import path. We call this seman-
tic import versioning.

Major version: increment for backwards-incompatible changes.

Minor version: increment for new features.
Patch version: increment for bug fixes.

V2 3 4 (semantic versioning)
L] L]
/\

import "my/thing/v2/sub/pkg"

(semantic import versioning)

In this example, my/thing/v2 identifies semantic version 2 of a particular mod-
ule. Version 1 was just my/thing, with no explicit version in the module path.
But when you introduce major version 2 or larger, you have to add the version
after the module name, to distinguish from version 1 and other major versions,
so version 2 is my/thing/v2, version 3 is my/thing/v3, and so on.

If the strings package were its own module, and if for some reason we re-
ally needed to redefine Split instead of adding a new function Fields, then
we could create strings (major version 1) and strings/v2 (major version 2),

https://golang.org/doc/go1compat.html

THE PRINCIPLES OF VERSIONING IN GO

with different Split functions. Then the unbuildable program from before can
be built: B says import ”strings" while C says import "strings/v2". Those
are different packages, so it's okay to build both into the program. And now B
and C can each have the Split function they expect.
Requirements
A BC

B strings >v1.0.0
C strings/v2 =2v2.0.0

| strings | | strings/v2 |

Because strings and strings/v2 have different import paths, people and tools
automatically understand that they name different packages, just as people al-
ready understand that crypto/rand and math/rand name different packages.
No one needs to learn a new disambiguation rule.

Let’s return to the unbuildable program, not using semantic import version-
ing. If we replace strings in this example with an arbitrary package D, then we
have a classic “diamond dependency problem” Both B and C build fine by them-
selves, but with different, conflicting requirements for D. If we try to use both
in a build of A, then there’s no single choice of D that works.

Requirements
A BC A
B Dvi

c bw [8]
| ov |

Semantic import versioning cuts through diamond dependencies. There’s no
such thing as conflicting requirements for D. D version 1.3 must be backwards
compatible with D version 1.2, and D version 2.0 has a different import path,
D/v2.

Requirements

A BC

B D=v1.00

C D/v2=v2.0.0

A program using both major versions keeps them as separate as any two pack-
age with different import paths and builds fine.

Objection: Aesthetics

The most common objection to semantic import versioning is that people don’t
like seeing the major versions in the import paths. In short, theyre ugly. Of
course, what this really means is only that people are not used to seeing the ma-
jor version in import paths.

I can think of two examples of major aesthetic shifts in Go code that seemed
ugly at the time but were adopted because they simplified software engineering
and now look completely natural.

The first example is export syntax. Back in early 2009, Go used an export
keyword to mark a function as exported. We knew we needed something more
lightweight to mark individual struct fields, and we were casting about for ideas,
considering things like “leading underscore means unexported” or “leading plus
in declaration means export” Eventually we hit on the “upper-case for export”
idea. Using an upper-case letter as the export signal looked strange to us, but
that was the only drawback we could find. Otherwise, the idea was sound, it
satisfied our goals, and it was more appealing than the other choices wed been
considering. So we adopted it. I remember thinking that changing fmt.printf

THE PRINCIPLES OF VERSIONING IN GO

to fmt.Printf in my code was ugly, or at least jarring: to me, fmt.Printf
didn’t look like Go, at least not the Go I had been writing. But I had no good
argument against it, so I went along with (and implemented) the change. After
a few weeks, I got used to it, and now it is fmt.printf that doesn’t look like Go
to me. What's more, I came to appreciate the precision about what is and isn’t
exported when reading code. When I go back to C++ or Java code now and I
see a call like x.dangerous() I miss being able to tell at a glance whether the
dangerous method is a public method that anyone can call.

The second example is import paths, which I mentioned briefly earlier. In
the early days of Go, before goinstall and go get, import paths were not
full URLs. A developer had to manually download and install a package named
uuid and then would write import "uuid". Changing to URLs for import
paths (import "github.com/google/uuid") eliminated this ambiguity, and the
added precision made go get possible. People did complain at first, but now the
longer paths are second nature to us. We rely on and appreciate their precision,
because it makes our software engineering work simpler.

Both these changes—upper-case for export and full URLs for import
paths—were motivated by good software engineering arguments to which the
only real objection was visual aesthetics. Over time we came to appreciate the
benefits, and our aesthetic judgements adapted. I expect the same to happen
with major versions in import paths. We'll get used to them, and well come to
value the precision and simplicity they bring.

Objection: Updating Import Paths

Another common objection is that upgrading from (say) v2 of a module to v3 of
the same module requires changing all the import paths referring to that mod-
ule, even if the client code doesn’t need any other changes.

Its true that the upgrade requires rewriting import paths, but it’s also easy to
write a tool to do a global search and replace. We intend to make it possible to
handle such upgrades with go fix, although we haven’t implemented that yet.

Both the previous objection and this one implicitly suggest keeping the major
version information only in a separate version metadata file. If we do that, then
an import path won’t be precise enough to identify semantics, like back when
import "uuid" might have meant any one of dozens of different packages. All
programmers and tools will have to look in the metadata file to answer the ques-
tion: which major version is this? Which strings.Split am I calling? What
happens when I copy a file from one module to another and forget to check the
metadata file? If instead we keep import paths semantically precise, then pro-
grammers and tools don’'t need to be taught a new way to keep different major
versions of a package separate.

Another benefit of having the major version in the import path is that when
you do update from v2 to v3 of a package, you can update your program grad-
ually, in stages, maybe one package at a time, and it’s always clear which code
has been converted and which has not.

Objection: Multiple Major Versions in a Build

Another common objection is that having D vl and D v2 in the same build
should be disallowed entirely. That way, D’s author won’t have to think about the
complexities that arise from that situation. For example, maybe package D de-
fines a command line flag or registers an HTTP handler, so that building both
D v1 and D v2 into a single program would fail without explicit coordination
between those versions.

Dep enforces exactly this restriction, and some people say it is simpler. But
this is simplicity only for D’s author. It’s not simplicity for D’s users, and normal-

https://talks.golang.org/2016/refactor.article

THE PRINCIPLES OF VERSIONING IN GO

ly users outnumber authors. If D v1 and D v2 cannot coexist in a single build,
then diamond dependencies are back. You can't convert a large program from
D vl to D v2 gradually, the way I just explained. In internet-scale projects, this
will fragment the Go package ecosystem into incompatible groups of packages:
those that use D v1 and those that use D v2. For a detailed example, see my 2018
blog post, “Semantic Import Versioning.”

Dep was forced to disallow multiple major versions in a build because the Go
build system requires each import path to name a unique package (and Dep did
not consider semantic import versioning). In contrast, Cargo and other systems
do allow multiple major versions in a build. As I understand it, the reason these
systems allow multiple versions is the same reason that Go modules does: not
allowing them makes it too hard to work on large programs.

Objection: Too Hard to Experiment

A final objection is that versions in import paths are unnecessary overhead
when you're just starting to design a package, you have no users, and you're
making frequent backwards-incompatible changes. That’s absolutely true.

Semantic versioning makes an exception for exactly that situation. In major
version 0, there are no compatibility expectations at all, so that you can iterate
quickly when you're first starting out and not worry about compatibility. For ex-
ample, v0.3.4 doesn’t need to be backwards compatible with anything else: not
v0.3.3, not v0.0.1, not v1.0.0.

Semantic import versioning makes a similar exception: major version 0 is not
mentioned in import paths.

In both cases, the rationale is that time has not entered the picture. Youre not
doing software engineering yet. You're just programming. Of course, this means
that if you use v0O versions of other people’s packages, then you are accepting
that new versions of those packages might include breaking API changes with-
out a corresponding import path change, and you take on the responsibility to
update your code when that happens.

Principle #2: Repeatability

The result of a build of a given version of a package should not change
over time.

The second principle is repeatability for program builds. By repeatability I mean
that when you are building a specific version of a package, the build should de-
cide which dependency versions to use in a way that’s repeatable, that doesn’t
change over time. My build today should match your build of my code tomor-
row and any other programmer’s build next year. Most package management
systems don't make that guarantee.

We saw earlier how GOPATH-based go get doesn’t provide repeatability.
First go get used a version of D that was too old:

Requirements c1.8

C1.8 D=14

D 1.0 none
broken!

https://research.swtch.com/vgo-import

THE PRINCIPLES OF VERSIONING IN GO

Then go get -u used a version of D that was too new:

Requirements
C18 D=14

D 1.6 none

(C 1.8 was tested with D 1.4
and has an unexpected broken!
incompatibility with D 1.6.)

Cc1.8

You might think, “of course go get makes this mistake: it doesn’t know anything
about versions at all” But most other systems make the same mistake. I'm going
to use Dep as my example here, but at least Bundler and Cargo work the same
way.

Dep asks every package to include a metadata file called a manifest, which
lists requirements for dependency versions. When Dep downloads C, it reads
C’s manifest and learns that C needs D 1.4 or later. Then Dep downloads the
newest version of D satisfying that constraint. Yesterday, that meant D 1.5:

Requirements
C18 D=14

D 1.5 none
| D15 |

Today, that means D 1.6:

Cc1.8

Requirements
C18 D=14
D1.6 none

Cc1.8

The decision is time-dependent. It changes from day to day. The build is not re-
peatable.

The developers of Dep (and Bundler and Cargo and ...) understood the im-
portance of repeatability, so they introduced a second metadata file called a lock
file. If C is a whole program, what Go calls package main, then the lock file lists
the exact version to use for every dependency of C, and Dep lets the lock file
override the decisions it would normally make. Locking in those decisions en-
sures that they stop changing over time and makes the build repeatable.

But lock files only apply to whole programs, to package main. What if C is a
library, being built as part of a larger program? Then a lock file meant for build-
ing only C might not satisfy the additional constraints in the larger program. So
Dep and the others must ignore lock files associated with libraries and fall back
to the default time-based decisions. When you add C 1.8 to a larger build, the
exact packages you get depends on what day it is.

In summary, Dep starts with a time-based decision about which version of D
to use. Then it adds a lock file, to override that time-based decision, for repeata-
bility, but that lock file can only be applied to whole programs.

In Go modules, the go command instead makes its decision about which ver-
sion of D to use in a way that does not change over time. Then builds are re-
peatable all the time, without the added complexity of a lock file override, and
this repeatability applies to libraries, not just whole programs.

The algorithm used for Go modules is very simple, despite the imposing
name “minimal version selection” It works like this. Each package specifies a
minimum version of each dependency. For example, suppose B 1.3 requests
D 1.3 or later, and C 1.8 requests D 1.4 or later. In Go modules, the go com-
mand prefers to use those exact versions, not the latest versions. If were build-
ing B by itself, we'll use D 1.3. If were building C by itself, we'll use D 1.4. The
builds of these libraries are repeatable.

THE PRINCIPLES OF VERSIONING IN GO

Requirements

| B1.3 | | c1.8 |
A1.20B>13,C>1.8

B13 D=>13

C1.8 D>14 [P13 | | D14 |
D 1.3 none

D 1.4 none

Also shown in the figure, if different parts of a build request different mini-
mum versions, the go command uses the latest requested version. The build of
A sees requests for D 1.3 and D 1.4, and 1.4 is later than 1.3, so the build choos-
es D 1.4. That decision does not depend on whether D 1.5 and D 1.6 exist, so
it does not change over time.

I call this minimal version selection for two reasons. First, for each package
it selects the minimum version satisfying the requests (equivalently, the maxi-
mum of the requests). And second, it seems to be just about the simplest ap-
proach that could possibly work.

Minimal version selection provides repeatability, for whole programs and for
libraries, always, without any lock files. It removes time from consideration. Ev-
ery chosen version is always one of the versions mentioned explicitly by some
package already chosen for the build.

Objection: Using the Latest Version is a Feature

The usual first objection to prioritizing repeatability is to claim that preferring
the latest version of a dependency is a feature, not a bug. The claim is that pro-
grammers either don’t want to or are too lazy to update their dependencies reg-
ularly, so tools like Dep should use the latest dependencies automatically. The
argument is that the benefits of having the latest versions outweigh the loss of
repeatability.

But this argument doesn’t hold up to scrutiny. Tools like Dep provide lock
files, which then require programmers to update dependencies themselves, ex-
actly because repeatable builds are more important than using the latest version.
When you deploy a 1-line bug fix, you want to be sure that your bug fix is the
only change, that youre not also picking up different, newer versions of your de-
pendencies.

You want to delay upgrades until you ask for them, so that you can be ready
to run all your unit tests, all your integration tests, and maybe even production
canaries, before you start using those upgraded dependencies in production. Ev-
eryone agrees about this. Lock files exist because everyone agrees about this: re-
peatability is more important than automatic upgrades.

Objection: Using the Latest Version is a Feature When Building
a Library

The more nuanced argument you could make against minimal version selection
would be to admit that repeatability matters for whole program builds, but then
argue that, for libraries, the balance is different, and having the latest dependen-
cies is more important than a repeatable build.

I disagree. As programming increasingly means connecting large libraries to-
gether, and those large libraries are increasingly organized as collections of
smaller libraries, all the reasons to prefer repeatability of whole-program builds
become just as important for library builds.

10

THE PRINCIPLES OF VERSIONING IN GO

The extreme limit of this trend is the recent move in cloud computing to
“serverless” hosting, like Amazon Lambda, Google Cloud Functions, or Mi-
crosoft Azure Functions. The code we upload to those systems is a library, not
a whole program. We certainly want the production builds on those servers to
use the same versions of dependencies as on our development machines.

Of course, no matter what, it's important to make it easy for programmers to
update their dependencies regularly. We also need tools to report which versions
of a package are in a given build or a given binary, including reporting when
updates are available and when there are known security problems in the ver-
sions being used.

Principle #3: Cooperation

To maintain the Go package ecosystem, we must all work together.
Tools cannot work around a lack of cooperation.

The third principle is cooperation. We often talk about “the Go community”
and “the Go open source ecosystem.” The words community and ecosystem em-
phasize that all our work is interconnected, that were building on—depending
on—each other’s contributions. The goal is one unified system that works as a
coherent whole. The opposite, what we want to avoid, is an ecosystem that is
fragmented, split into groups of packages that can’t work with each other.

The principle of cooperation recognizes that the only way to keep the ecosys-
tem healthy and thriving is for us all to work together. If we don't, then no mat-
ter how technically sophisticated our tools are, the Go open source ecosystem is
guaranteed to fragment and eventually fail. By implication, then, it's okay if fix-
ing incompatibilities requires cooperation. We can’t avoid cooperation anyway.

For example, once again we have C 1.8, which requires D 1.4 or later. Thanks
to repeatability, a build of C 1.8 by itself will use D 1.4. If we build C as part of
a larger build that needs D 1.5, that’s okay too.

Then D 1.6 is released, and some larger build, maybe continuous integration
testing, discovers that C 1.8 does not work with D 1.6.

larger build larger build

Requirements
cis p=14 | €18] [€18 | [18 |
D1.4 none
D1.5 none | D1.4 | | D15 | | D1.6 |
D1.6 none

OK OK broken!

No matter what, the solution is for C’s author and D’s author to cooperate and
release a fix. The exact fix depends on what exactly went wrong.

Maybe C depends on buggy behavior fixed in D 1.6, or maybe C depends on
unspecified behavior changed in D 1.6. Then the solution is for C’s author to re-
lease a new C version 1.9, cooperating with the evolution of D.

Requirements larger build larger build
C18 D=14
C19 D=14
D1.4 none | c19 | [c1o | | Cro |
D1.5 none
D1.6 none | D14 | [D15 | | D16 |

OK OK OK

11

THE PRINCIPLES OF VERSIONING IN GO

Or maybe D 1.6 simply has a bug. Then the solution is for D’s author to release
a fixed D 1.7, cooperating by respecting the principle of compatibility, at which
point C’s author can release C version 1.9 that specifies that it requires D 1.7.

Requirements
C18 D=14
C19 D=17
D1.4 none | c1.9 | | c1.9 | | c1.9 |
D 1.5 none

D1.6 none | D17 | [D17 | | D17 |
D 1.7 none

larger build larger build

OK OK OK

Take a minute to look at what just happened. The latest C and the latest D didn’t
work together. That introduced a small fracture in the Go package ecosystem.
C’s author or D’s author worked to fix the bug, cooperating with each other and
the rest of the ecosystem to repair the fracture. This cooperation is essential to
keeping the ecosystem healthy. There is no adequate technical substitute.

The repeatable builds in Go modules mean that a buggy D 1.6 won't be
picked up until users explicitly ask to upgrade. That creates time for C’s author
and D’s author to cooperate on a real solution. The Go modules system makes
no other attempt to work around these temporary incompatibilities.

Objection: Use Declared Incompatibilities and SAT Solvers

The most common objection to this approach of depending on cooperation is
that it is unreasonable to expect developers to cooperate. Developers need some
way to fix problems alone. the argument goes: they can only truly depend on
themselves, not others. The solution offered by package managers like Bundler,
Cargo, and Dep is to allow developers to declare incompatibilities between their
packages and others and then employ a SAT solver to find a package combina-
tion not ruled out by the constraints.

This argument breaks down for a few reasons.

First, the algorithm used by Go modules to select versions already gives the
developer of a particular module complete control over which versions are se-
lected for that module, more control in fact than SAT constraints. The develop-
er can force the use of any specific version of any dependency, saying “use this
exact version no matter what anyone else says” But that power is limited to the
build of that specific module, to avoid giving other developers the same control
over your builds.

Second, repeatability of library builds in Go modules means that the release
of a new, incompatible version of a dependency has no immediate effect on
builds, as we saw in the previous section. The breakage only surfaces when
someone takes some step to add that version to their own build, at which point
they can step back again.

Third, if version selection is phrased as a problem for a SAT solver, there are
often many possible satisfying selections: the SAT solver must choose between
them, and there is no clear criteria for doing so. As we saw earlier, SAT-based
package managers choose between multiple valid possible selections by prefer-
ring newer versions. In the case where using the newest version of everything
satisfies the constraints, that’s the clear “most preferred” answer. But what if the
two possible selections are “latest of B, older C” and “older B, latest of C”? Which
should be preferred? How can the developer predict the outcome? The resulting
system is difficult to understand.

Fourth, the output of a SAT solver is only as good as its inputs: if any incom-
patibilities have been omitted, the SAT solver may well arrive at a combination
that is still broken, just not declared as such. Incompatibility information is like-

12

https://research.swtch.com/version-sat
https://research.swtch.com/vgo-mvs

THE PRINCIPLES OF VERSIONING IN GO

ly to be particularly incomplete for combinations involving dependencies with a
significant age difference that may well never have been put together before. In-
deed, an analysis of Rust’s Cargo ecosystem in 2018 found that Cargo’s prefer-
ence for the latest version was masking many missing constraints in Cargo man-
ifests. If the latest version does not work, exploring old versions seems as likely
to produce a combination that is “not yet known to be broken” as it is to pro-
duce a working one.

Opverall, once you step off the happy path of selecting the newest version of
every dependency, SAT solver-based package managers are not more likely to
choose a working configuration than Go modules is. If anything, SAT solvers
may well be less likely to find a working configuration.

Example: Go Modules versus SAT Solving

The counter-arguments given in the previous section are a bit abstract. Lets
make them concrete by continuing the example we've been working with and
looking at what happens when using a SAT solver, like in Dep. 'm using Dep
for concreteness, because it is the immediate predecessor of Go modules, but the
behaviors here are not specific to Dep and I don’t mean to single it out. For the
purposes of this example, Dep works the same way as many other package man-
agers, and they all share the problems detailed here.

To set the stage, remember that C 1.8 works fine with D 1.4 and D 1.5, but
the combination of C 1.8 and D 1.6 is broken.

larger build larger build

Requirements
cis p=14 | €18] [€18 | [18 |
D1.4 none
D1.5 none | D1.4 | | D15 | | D1.6 |
D1.6 none

OK OK broken!

That gets noticed, perhaps by continuous integration testing, and the question
is what happens next.

When C’s author finds out that C 1.8 doesn’t work with D 1.6, Dep allows
and encourages issuing a new version, C 1.9. C 1.9 documents that it needs D
later than 1.4 but before 1.6. The idea is that documenting the incompatibility
helps Dep avoid it in future builds.

Requirements

larger build
C1.8 D=14
C19 D=14,D<16
D1.4 none | c18 | [cio | | cr9 |
D 1.5 none
D1.6 none | D1.6 | | D15 | | D15 |
broken! OK OK

In Dep, avoiding the incompatibility is important—even urgent!—because the
lack of repeatability in library builds means that as soon as D 1.6 is released, all
future fresh builds of C will use D 1.6 and break. This is a build emergency: all
of C’s new users are broken. If D’s author is unavailable, or C’s author doesn’t
have time to fix the actual bug, the argument is that C’s author must be able to
take some step to protect users from the breakage. That step is to release C 1.9,
documenting the incompatibility with D 1.6. That fixes new builds of C by pre-
venting the use of D 1.6.

This emergency doesn’t happen when using Go modules, because of mini-
mal version selection and repeatable builds. Using Go modules, the release of
D 1.6 does not affect C’s users, because nothing is explicitly requesting D 1.6

13

https://illicitonion.blogspot.com/2018/06/rust-minimum-versions-semver-is-lie.html

THE PRINCIPLES OF VERSIONING IN GO

yet. Users keep using the older versions of D they already use. There’s no need to
document the incompatibility, because nothing is breaking. There’s time to co-
operate on a real fix.

Looking at Dep’s approach of documenting incompatibility again, releasing
C 1.9 is not a great solution. For one thing, the premise was that D’s author cre-
ated a build emergency by releasing D 1.6 and then was unavailable to release a
fix, so it was important to give C’s author a way to fix things, by releasing C 1.9.
But if D’s author might be unavailable, what happens if C’s author is unavail-
able too? Then the emergency caused by automatic upgrades continues and all
of C’s new users stay broken. Repeatable builds in Go modules avoid the emer-
gency entirely.

Also, suppose that the bug is in D, and D’s author issues a fixed D 1.7. The
workaround C 1.9 requires D before 1.6, so it won't use the fixed D 1.7. C’s au-
thor has to issue C 1.10 to allow use of D 1.7.

Requirements

C18 D=14

C19 D=14,D<16
€110 D>17 [ci8] [cro] [crio]

D 1.4 none
D1.5 none | D17 | | D1.5 | | D1.7 |
D 1.6 none

D 1.7 none OK OK OK

In contrast, if we're using Go modules, C’s author doesn’t have to issue C 1.9 and
then also doesn’t have to undo it by issuing C 1.10.

In this simple example, Go modules end up working more smoothly for users
than Dep. They avoid the build breakage automatically, creating time for coop-
eration on the real fix. Ideally, C or D gets fixed before any of C’s users even no-
tice.

But what about more complex examples? Maybe Dep’s approach of docu-
menting incompatibilities is better in more complicated situations, or maybe it
keeps things working even when the real fix takes a long time to arrive.

Let’s take a look. To do that, let’s rewind the clock a little, to before the bug-
gy D 1.6 is released, and compare the decisions made by Dep and Go modules.
This figure shows the documented requirements for all the relevant package ver-
sions, along with the way both Dep and Go modules would build the latest C
and the latest A.

Requirements Dep Dep
A120B=>13,C>1.8
4 Cc1.8
C18 D=14
D 1.3 none | D15 | | B13 | cis
D 1.4 none
D 1.5 none OK m
OK
Go modules Go modules

LD
| D1.4 | | B1.3 | Cc1.8
| D14 |

OK

Dep is using D 1.5 while the Go module system is using D 1.4, but both tools
have found working builds. Everyone is happy.

THE PRINCIPLES OF VERSIONING IN GO

But now suppose the buggy D 1.6 is released.

Requirements Dep Dep
A120B=>13,C>1.8
4 Cc1.8
C18 D=14
D 1.3 none | D1.6 | | B13 | cis
D 1.4 none
!
D1.5 none broken! m
D 1.6 none broken!
Go modules Go modules
| D1.4 | | B1.3 | c1.8

Dep builds pick up D 1.6 automatically and break. Go modules builds keep us-
ing D 1.4 and keep working. This is the simple situation we were just looking at.

Before we move on, though, let’s fix the Dep builds. We release C 1.9, which
documents the incompatibility with D 1.6:

Requirements Dep Dep
A120B=>13,C>1.8
4 c1.9

B13 D213 [A120 |
C18 D=14
C19 D>14D<16 | P15 | [B13] €19
D 1.3 none
D 1.4 none OK m
D 1.5 none
D 1.6 none oK

Go modules Go modules

][R0
| D1.4 | | B1.3 | Cc1.8
| D14 |

OK

Now Dep builds pick up C 1.9 automatically, and builds start working again. Go
modules can’t document incompatibility in this way, but Go modules builds also
aren't broken, so no fix is needed.

Now let’s create a build complex enough to break Go modules. We can do this
in two steps. First, we will release a new B that requires D 1.6. Second, we will
release a new A that requires the new B, at which point A’s build will use C with
D 1.6 and break.

15

THE PRINCIPLES OF VERSIONING IN GO

We start by releasing the new B 1.4 that requires D 1.6.

Requirements Dep Dep or maybe
A1.20B>13,C>1.8
B14 D=16
C18 D=14 | D15 | | B1.4 | | c1.8 | | B1.3 | | c1.9 |
C19 D=14D<16
g:: :g:: broken! OK
D1.6 none Go modules Go modules
| D14 | [B13 | [c18 |
ox
OK

Go modules builds are unaffected so far, thanks to repeatability. But look! Dep
builds of A pick up B 1.4 automatically and now they are broken again. What
happened?

Dep prefers to build A using the latest B and the latest C, but that’s not possi-
ble: the latest B wants D 1.6 and the latest C wants D before 1.6. But does Dep
give up? No. It looks for alternate versions of B and C that do agree on an ac-
ceptable D.

In this case, Dep decided to keep the latest B, which means using D 1.6,
which means not using C 1.9. Since Dep can’t use the latest C, it tries older ver-
sions of C. C 1.8 looks good: it says it needs D 1.4 or later, and that allows
D 1.6. So Dep uses C 1.8, and it breaks.

We know that C 1.8 and D 1.6 are incompatible, but Dep does not. Dep can't
know it, because C 1.8 was released before D 1.6: C’s author couldn’t have pre-
dicted that D 1.6 would be a problem. And all package management systems
agree that package contents must be immutable once they are published, which
means there’s no way for C’s author to retroactively document that C 1.8 doesn't
work with D 1.6. (And if there were some way to change C 1.8’s requirements
retroactively, that would violate repeatability.) Releasing C 1.9 with the updated
requirement was the fix.

Because Dep prefers to use the latest C, most of the time it will use C 1.9 and
know to avoid D 1.6. But if Dep can't use the latest of everything, it will start
trying earlier versions of some things, including maybe C 1.8. And using C 1.8
makes it look like D 1.6 is okay—even though we know better—and the build
breaks.

Or it might not break. Strictly speaking, Dep didn’t have to make that deci-
sion. When Dep realized that it couldn’t use both the latest B and the latest C,
it had many options for how it might proceed. We assumed Dep kept the lat-
est B. But if instead Dep kept the latest C, then it would need to use an older D
and then an older B, producing a working build, as shown in the third column
of the diagram.

So maybe Dep’s builds are broken or maybe not, depending on the arbitrary
decisions it makes in its SAT-solver-based version selection. (Last I checked, giv-
en a choice between a newer version of one package versus another, Dep prior-
itizes the one with the alphabetically earlier import path, at least in small test
cases.)

This example demonstrates another way that Dep and systems like it (nearly
all package managers besides Go modules) can produce surprising results: when
the one most preferred answer (use the latest of everything) does not apply,

16

https://research.swtch.com/version-sat

THE PRINCIPLES OF VERSIONING IN GO

there are often many choices with no clear preferences between them. The exact
answer depends on the details of the SAT solving algorithm, heuristics, and of-
ten the input order of the packages are presented to the solver. This underspec-
ification and non-determinism in their solvers is another reason these systems
need lock files.

In any event, for the sake of Dep users, let’s assume Dep lucked into the choice
that keeps builds working. After all, we're still trying to break the Go modules
users’ builds.

To break Go modules builds, lets release a new version of A, version 1.21,
which requires the latest B, which in turn requires the latest D. Now, when the
go command builds the latest A, it is forced to use the latest B and the latest
D. In Go modules, there is no C 1.9, so the go command uses C 1.8, and the
combination of C 1.8 and D 1.6 does not work. Finally, we have broken the Go
modules builds!

Requirements Dep Dep
A121B>14,C>18
B14 D=16
C1.8 D>14 [p1s | [B14 | [cCi8 |
C19 D=14D<16
D 1.3 none OK
D 1.4 none broken!
D 1.5 none
D1.6 none Go modules Go modules
| D14 | | B14 | [c18 |
o
broken!

But look! The Dep builds are using C 1.8 and D 1.6 too, so theyre also bro-
ken. Before, Dep had to make a choice between the latest B and the latest C. If
it chose the latest B, the build broke. If it chose the latest C, the build worked.
The new requirement in A is forcing Dep to choose the latest B and the latest
D, taking away Dep’s choice of latest C. So Dep uses the older C 1.8, and the
build breaks just like before.

What should we conclude from all this? First of all, documenting an incom-
patibility for Dep does not guarantee to avoid that incompatibility. Second, a re-
peatable build like in Go modules also does not guarantee to avoid the incom-
patibility. Both tools can end up building the incompatible pair of packages. But
as we saw; it takes multiple intentional steps to lead Go modules to a broken
build, steps that lead Dep to the same broken build. And along the way the Dep-
based build broke two other times when the Go modules build did not.

I've been using Dep in these examples because it is the immediate predeces-
sor of Go modules, but I don’t mean to single out Dep. In this respect, it works
the same way as nearly every other package manager in every other language.
They all have this problem. Theyre not even really broken or misbehaving so
much as unfortunately designed. They are designed to try to work around a lack
of cooperation among the various package maintainers, and tools cannot work
around a lack of cooperation.

The only real solution for the C versus D incompatibility is to release a new,
fixed version of either C or D. Trying to avoid the incompatibility is useful only
because it creates more time for C’s author and D’s author to cooperate on a
fix. Compared to the Dep approach of preferring latest versions and document-
ing incompatibilities, the Go modules approach of repeatable builds with mini-

17

THE PRINCIPLES OF VERSIONING IN GO

mal version selection and no documented incompatibilities creates time for co-
operation automatically, with no build emergencies, no declared incompatibili-
ties, and no explicit work by users.

Then we can rely on cooperation for the real fix.

Conclusion

These are the three principles of versioning in Go, the reasons that the design
of Go modules deviates from the design of Dep, Cargo, Bundler, and others.

- Compatibility. The meaning of a name in a program should not
change over time.

- Repeatability. The result of a build of a given version of a package
should not change over time.

- Cooperation. To maintain the Go package ecosystem, we must all work
together. Tools cannot work around a lack of cooperation.

These principles are motivated by concerns about software engineering, which
is what happens to programming when you add time and other programmers.
Compatibility eliminates the effects of time on the meaning of a program. Re-
peatability eliminates the effects of time on the result of a build. Cooperation is
an explicit recognition that, no matter how advanced our tools are, we do have
to work with the other programmers. We can’t work around them.

The three principles also reinforce each other, in a virtuous cycle.

Compatibility enables a new version selection algorithm, which provides re-
peatability. Repeatability makes sure that buggy, new releases are ignored until
explicitly requested, which creates more time to cooperate on fixes. That coop-
eration in turn reestablishes compatibility. And the cycle goes around.

As of Go 1.13, Go modules are ready for production use, and many compa-
nies, including Google, have adopted them. The Go 1.14 and Go 1.15 releas-
es will bring additional ergonomic improvements, toward eventually deprecating
and removing support for GOPATH. For more about adopting modules, see the
blog post series on the Go blog, starting with “Using Go Modules.”

18

https://blog.golang.org/using-go-modules

