
Reproducible, Verifiable, Verified Builds
Go & Versioning, Part 5

Russ Cox
February 21, 2018

research.swtch.com/vgo-repro

Once both Go developers and tools share a vocabulary around package versions,
it’s relatively straightforward to add support in the toolchain for reproducible,
verifiable, and verified builds. In fact, the basics are already in the vgo prototype.

Since people sometimes disagree about the exact definitions of these terms,
let’s establish some basic terminology. For this post:

– A reproducible build is one that, when repeated, produces the same re-
sult.

– A verifiable build is one that records enough information to be precise
about exactly how to repeat it.

– A verified build is one that checks that it is using the expected source
code.

Vgo delivers reproducible builds by default. The resulting binaries are verifiable,
in that they record versions of the exact source code that went into the build.
And it is possible to configure your repository so that users rebuilding your soft-
ware verify that their builds match yours, using cryptographic hashes, no mat-
ter how they obtain the dependencies.

Reproducible Builds

At the very least, we want to make sure that when you build my program, the
build system decides to use the same versions of the code. Minimal version se-
lection delivers this property by default. The go.mod file alone is enough to
uniquely determine which module versions should be used for the build (assum-
ing dependencies are available), and that decision is stable even as new versions
of a module are introduced into the ecosystem. This differs from most other
systems, which adopt new versions automatically and need to be constrained to
yield reproducible builds. I covered this in the minimal version selection post,
but it’s an important, subtle detail, so I’ll try to give a short reprise here.

To make this concrete, let’s look at a few real packages from Cargo, Rust’s
package manager. To be clear, I am not picking on Cargo. I think Cargo is an
example of the current state of the art in package managers, and there’s much
to learn from it. If we can make Go package management as smooth as Cargo’s,
I’ll be happy. But I also think that it is worth exploring whether we would ben-
efit from choosing a different default when it comes to version selection.

Cargo prefers maximum versions in the following sense. Over at crates.io, the
latest toml is 0.4.5 as I write this post. It lists a dependency on serde 1.0 or lat-
er; the latest serde is 1.0.27. If you start a new project and add a dependen-
cy on toml 0.4.1 or later, Cargo has a choice to make. According to the con-
straints, any of 0.4.1, 0.4.2, 0.4.3, 0.4.4, or 0.4.5 would be acceptable. All other
things being equal, Cargo prefers the newest acceptable version, 0.4.5. Similar-
ly, any of serde 1.0.0 through 1.0.27 are acceptable, and Cargo chooses 1.0.27.
These choices change as new versions are introduced. If serde 1.0.28 is released
tonight and I add toml 0.4.5 to a project tomorrow, I’ll get 1.0.28 instead of
1.0.27. As described so far, Cargo’s builds are not repeatable. Cargo’s (entirely
reasonable) answer to this problem is to have not just a constraint file (the man-
ifest, Cargo.toml) but also a list of the exact artifacts to use in the build (the



vgo
https://research.swtch.com/vgo-repro
vgo-mvs
https://crates.io/crates/toml
https://crates.io/crates/serde
cargo-newest.html

R, V, V B

lock file, Cargo.lock). The lock file stops future upgrades; once it is written,
your build stays on serde 1.0.27 even when 1.0.28 is released.

In contrast, minimal version selection prefers the minimum allowed version,
which is the exact version requested by some go.mod in the project. That answer
does not change as new versions are added. Given the same choices in the Car-
go example, vgo would select toml 0.4.1 (what you requested) and then serde

1.0 (what toml requested). Those choices are stable, without a lock file. This is
what I mean when I say that vgo’s builds are reproducible by default.

Verifiable Builds

Go binaries have long included a string indicating the version of Go they were
built with. Last year I wrote a tool rsc.io/goversion that fetches that informa-
tion from a given executable or tree of executables. For example, on my Ubun-
tu Linux laptop, I can look to see which system utilities are implemented in Go:

$ go get -u rsc.io/goversion

$ goversion /usr/bin

/usr/bin/containerd go1.8.3

/usr/bin/containerd-shim go1.8.3

/usr/bin/ctr go1.8.3

/usr/bin/go go1.8.3

/usr/bin/gofmt go1.8.3

/usr/bin/kbfsfuse go1.8.3

/usr/bin/kbnm go1.8.3

/usr/bin/keybase go1.8.3

/usr/bin/snap go1.8.3

/usr/bin/snapctl go1.8.3

$

Now that the vgo prototype understands module versions, it includes that in-
formation in the final binary too, and the new goversion -m flag prints it back
out. Using our “hello, world” program from the tour:

$ go get -u rsc.io/goversion

$ goversion ./hello

./hello go1.10

$ goversion -m hello

./hello go1.10

path github.com/you/hello

mod github.com/you/hello (devel)

dep golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c

dep rsc.io/quote v1.5.2

dep rsc.io/sampler v1.3.0

$

The main module, supposedly github.com/you/hello, has no version infor-
mation, because it’s the local development copy, not a specific version we down-
loaded. But if instead we build a command directly from a versioned module,
then the listing does report versions for all modules:

$ vgo build -o hello2 rsc.io/hello

vgo: resolving import "rsc.io/hello"

vgo: finding rsc.io/hello (latest)

vgo: adding rsc.io/hello v1.0.0

vgo: finding rsc.io/hello v1.0.0

vgo: finding rsc.io/quote v1.5.1

vgo: downloading rsc.io/hello v1.0.0



vgo-tour

R, V, V B

$ goversion -m ./hello2

./hello2 go1.10

path rsc.io/hello

mod rsc.io/hello v1.0.0

dep golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c

dep rsc.io/quote v1.5.2

dep rsc.io/sampler v1.3.0

$

When we do integrate versions into the main Go toolchain, we will add
APIs to access this information from inside a running binary, just like run-

time.Version provides access to the more limited Go version information.
For the purpose of attempting to reconstruct the binary, the information list-

ed by goversion -m suffices: put the versions into a go.mod file and build the
target named on the path line. But if the result is not the same binary, you
might wonder about ways to narrow down what’s different. What changed?

When vgo downloads each module, it computes a hash of the file tree corre-
sponding to that module. That hash is also included in the binary, alongside the
version information, and goversion -mh prints it:

$ goversion -mh ./hello

hello go1.10

path github.com/you/hello

mod github.com/you/hello (devel)

dep golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:qgOY6WgZOaTkIIMiVjBQcw93ER... dep rsc.io/quote

hello go1.10

path rsc.io/hello

mod rsc.io/hello v1.0.0 h1:CDmhdOARcor1WuRUvmE46PK91ahrS... dep golang.org/x/text

The h1: prefix indicates which hash is being reported. Today, there is only “hash
1,” a SHA-256 hash of a list of files and the SHA-256 hashes of their contents. If
we need to update to a new hash later, the prefix will help us tell old from new
hashes.

I must stress that these hashes are self-reported by the build system. If some-
one gives you a binary with certain hashes in its build information, there’s no
guarantee they are accurate. They are very useful information supporting a lat-
er verification, not a signature that can be trusted by themselves.

Verified Builds

An author distributing a program in source form might want to let users verify
that they are building it with exactly the expected dependencies. We know vgo

will make the same decisions about which versions of dependencies to use, but
there is still the problem of mapping a version like v1.5.2 to an actual source
tree. What if the author of v1.5.2 changes the tag to point at a different file tree?
What if a malicious middlebox intercepts the download request and delivers a
different zip file? What if the user has accidentally edited the source files in the
local copy of v1.5.2? The vgo prototype supports this kind of verification too.

The final form may be somewhat different, but if you create a file named
go.modverify next to go.mod, then builds will keep that file up-to-date with
known hashes for specific versions of modules:

$ echo >go.modverify

$ vgo build

$ tcat go.modverify # go get rsc.io/tcat, or use cat

golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:qgOY6WgZOaTkIIMiVjBQcw93ERBE4m30iBm00nk...rsc.io/quote

The go.modverify file is a log of the hash of all versions ever encountered: lines



https://golang.org/pkg/runtime/#Version

R, V, V B

are only added, never removed. If we update rsc.io/sampler to v1.3.1, then
the log will now contain hashes for both versions:

$ vgo get rsc.io/sampler@v1.3.1

$ tcat go.modverify

golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:qgOY6WgZOaTkIIMiVjBQcw93ERBE4m30iBm00nk...rsc.io/quote

When go.modverify exists, vgo checks that all downloaded modules used in
a given build are consistent with entries already in the file. For example, if we
change the first digit of the rsc.io/quote hash from w to v:

$ vgo build

vgo: verifying rsc.io/quote v1.5.2: module hash mismatch

downloaded: h1:w5fcysjrx7yqtD/aO+QwRjYZOKnaM9Uh2b40tElTs3Y=

go.modverify: h1:v5fcysjrx7yqtD/aO+QwRjYZOKnaM9Uh2b40tElTs3Y=

$

Or suppose we fix that one but then modify the v1.3.0 hash. Now our build suc-
ceeds, because v1.3.0 is not being used by the build, so its line is (correctly) ig-
nored. But if we try to downgrade to v1.3.0, then the build verification will cor-
rectly begin failing:

$ vgo build

$ vgo get rsc.io/sampler@v1.3.0

vgo: verifying rsc.io/sampler v1.3.0: module hash mismatch

downloaded: h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=

go.modverify: h1:8uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=

$

Developers who want to ensure that others rebuild their program with exactly
the same sources they did can store a go.modverify in their repository. Then
others building using the same repo will automatically get verified builds. For
now, only the go.modverify in the top-level module of the build applies. But
note that go.modverify lists all dependencies, including indirect dependencies,
so the whole build is verified.

The go.modverify feature helps detect unexpected mismatches between
downloaded dependencies on different machines. It compares the hashes in
go.modverify against hashes computed and saved at module download time. It
is also useful to check that downloaded modules have not changed on the local
machine since it was downloaded. This is less about security from attacks and
more about avoiding mistakes. For example, because source file paths appear in
stack traces, it’s common to open those files when debugging. If you acciden-
tally (or, I suppose, intentionally) modify the file during the debugging session,
it would be nice to be able to detect that later. The vgo verify command does
this:

$ go get -u golang.org/x/vgo # fixed a bug, sorry! :-)

$ vgo verify

all modules verified

$

If a source file changes, vgo verify notices:

$ echo >>$GOPATH/src/v/rsc.io/quote@v1.5.2/quote.go

$ vgo verify

rsc.io/quote v1.5.2: dir has been modified (/Users/rsc/src/v/rsc.io/quote@v1.5.2)

$

If we restore the file, all is well:



R, V, V B

$ gofmt -w $GOPATH/src/v/rsc.io/quote@v1.5.2/quote.go

$ vgo verify

all modules verified

$

If cached zip files are modified after download, vgo verify notices that too, al-
though I can’t plausibly explain how that might happen:

$ zip $GOPATH/src/v/cache/rsc.io/quote/@v/v1.5.2.zip /etc/resolv.conf

adding: etc/resolv.conf (deflated 36%)

$ vgo verify

rsc.io/quote v1.5.2: zip has been modified (/Users/rsc/src/v/cache/rsc.io/quote/@v/v1.5.2.zip)

$

Because vgo keeps the original zip file after unpacking it, if vgo verify decides
that only one of the zip file and the directory tree have been modified, it could
even print a diff of the two.

What’s Next?

This is implemented already in vgo. You can try it out and use it. As with the
rest of vgo, feedback about what doesn’t work right (or works great) is appreci-
ated.

The functionality presented here is more the start of something than a fin-
ished feature. A cryptographic hash of the file tree is a building block. The
go.modverify built on top of it checks that developers all build a particular
module with precisely the same dependencies, but there’s no verification when
downloading a new version of a module (unless someone else already added it
to go.modverify), nor is there any sharing of expected hashes between mod-
ules.

The exact details of how to fix those two shortcomings are not obvious. It
may make sense to allow some kind of cryptographic signatures of the file tree,
and to verify that an upgrade finds a version signed with the same key as the
previous version. Or it may make sense to adopt an approach along the lines of
The Update Framework (TUF), although using their network protocols directly
is not practical. Or, instead of using per-repo go.modverify logs, it might make
sense to establish some kind of shared global log, a bit like Certificate Trans-
parency, or to use a public identity server like Upspin. There are many avenues
we might explore, but all this is getting a little ahead of ourselves. For now we
are focused on successfully integrating versioning into the go command.



https://theupdateframework.github.io/
https://www.certificate-transparency.org/
https://upspin.io/

